
 - 1 -

April, 2007

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 - Q5 Q6 - Q9 Q10 - Q13

Question Selection Compulsory Select 1 of 4 Select 1 of 4

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:
1. Use a pencil. If you need to change an answer, erase your previous answer completely

and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your test will not be graded if you do not mark properly. Do not mark or write
on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection（Q6-Q9 and Q10-Q13）
Mark the s of the question you select to answer in the “Selection Column” on
your answer sheet.

(4) Answers
Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the next Fundamental IT Engineer Examination conducted?
Answer group:

a) September b) October c) November d) December

Since the correct answer is “b)” (October), mark your answer sheet as follows:

[Sample Reply]

SQ a b c d

1 ウ

3. “Assembly Language specifications” are provided as a reference at the end of this

booklet.

 Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

 - 2 -

Company names and product names appearing in the test questions are trademarks or registered trademarks of

their respective companies. Note that the ® and ™ symbols are not used within.

 - 3 -

[Explanation of the Pseudo-Code Description Format]

Pseudo-Language Syntax Description

 A continuous area where declarations and
processes are described.


Declares names, types, etc. of procedures,
variables, etc.

 Variable  Expression Assigns the value of an Expression to a Variable.

Conditional expression

 Process 1

 Process 2

A selection process.
If the Conditional expression is True, then
Process 1 is executed.
If it is False, then Process 2 is executed.

Conditional expression

 Process
A repetition process with the termination condition
at the top.
The Process is executed while the Conditional
expression is True.

[Operator]

Operation Operator Priority

Unary operation + - not High

Multiplication and division
operation

* /

Addition and subtraction
operation

+ -

Relational operation > < >= <= =

Logical product and

Logical sum
Exclusive logical sum

or xor Low

 [Logic type constant]

true false

 - 4 -

Questions 1 through 5 are all compulsory. Answer every question.

Q1. Read the following description of lists, and then answer Subquestions 1, 2 and 3.

The structure of the lists is as shown in Figure 1.

…

ROOT

0091 0093 0095 00B0 0000

Fig. 1 List Structure

1) ROOT means the start of the list.

2) Elements of the list consist of two consecutive words. The first word stores the

value, and the second word stores a pointer to the next element.

3) Each element of the list is linked to the next in ascending order of the value, and all

values are unique. In the second word of the last element, 0000 is stored as a

pointer.

4) A list with the structure shown in Fig. 1 is stored at addresses 00FF to 0117 in the

main memory as shown in Figure 2. Address 00FF is ROOT.

5) One word consists of 16 bits, and addresses are assigned in word units.

… …

Fig. 2 State of the Main Memory

 - 5 -

Subquestion 1

From the answer group below, select the correct answer for the contents of address 010C.

Answer group:

a) 0099 b) 00A1 c) 00A3 d) 00A4
e) 00A5

Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks
 in the following description.

In order to delete the elements at addresses 0110 and 0111, the contents of address
A need to be changed to B .

Answer group:

a) 0101 b) 0102 c) 0103 d) 0104
e) 0105 f) 0113 g) 0114 h) 0115
i) 0116 j) 0117

Subquestion 3

From the answer group below, select the correct answers to be inserted into the blanks
 in the following description.

In order to merge the sublist consisting of the three elements stored at addresses 0118

through 011D and the original list (before deleting the elements in Subquestion 2), the

contents of address C need to be changed to 011A, the contents of address
D to 0102, the contents of address E to 011C, and the contents of

address F to 0108 respectively.

Answer group:

a) 0109 b) 010B c) 010D d) 010F
e) 0111 f) 0113 g) 0115 h) 0117
i) 0119 j) 011B

 - 6 -

Q2. Read the following description of a relational database, and then answer

Subquestions 1, 2 and 3.

A certain database consists of the following employee and department table. An employee

works for a department and may or may not have a manager.

emp (employee) table

empno ename job mgr hiredate sal comm deptno

dept (department) table
deptno dname loc

Subquestion 1

A display of the highest earner of each job is required, wherein the employees of each job

category would be compared to the highest salary within the category.

ename job Highest-Salary

From the answer group below, select the correct answers to be inserted into the blanks
 in the following SQL statement.

SELECT ename, job, A

FROM emp

WHERE sal IN (SELECT B FROM emp GROUP BY job)

ORDER BY C descending;

Answer group:

a) Highest-Salary b) MAX (sal)

c) MAX (sal) Highest-Salary d) sal

e) sal Highest-Salary f) salary

Subquestion 2

Provided that the empno is also used to denote mgr for another employee, what would be

the appropriate select statement to determine the number of distinct managers without

listing them.

No of managers

 - 7 -

Answer group:

a) select count (distinct (mgr)) "No of managers" from emp;

b) select count (mgr (distinct)) "No of managers" from emp;

c) select distinct (count (mgr)) "No of managers" from emp;

d) select distinct (mgr) "No of managers" from emp;

e) select mgr (distinct) "No of managers" from emp;

Subquestion 3

There is another table called salgrade, which has the salary grading and the lowest and

highest salary within the grade.

salgrade table with data
grade lowsal highsal

1 700 1200
2 1201 1400
3 1401 2000
4 2001 3000
5 3001 9999

A listing of employees including employee name, job, salary and salary grade is done to

determine all employees in grade 2.

From the answer group below, select the correct answers to be inserted into the blanks
 in the following SQL statement.

select e.ename, e.job, e.sal, s.grade

from D ,

where E and s.grade = 2;

Answer group for D:

a) e.emp, s.grade b) e.emp, s.salgrade

c) emp e, grade s d) emp e, salgrade s

e) emp, grade f) emp, salgrade

Answer group for E:

a) e.sal <= s.highsal

b) e.sal <= s.lowsal

c) e.sal >= s.highsal

d) e.sal >= s.lowsal

e) e.sal between s.lowsal and s.highsal

f) e.sal between s.lowsal or s.highsal

 - 8 -

Q3. Read the following description of DNS (Domain Name System), and then answer the

Subquestions 1 and 2.

In a certain enterprise, each computer in the in-house network is controlled by using a

domain name. The configuration of the network in this enterprise is shown below.

example.com

…

GATEWAY
Name server

PC2001

PC2002

PC2003

SV01
Web server

SV01
Web server

SV01
Web server

…

PC1001

PC1002

PC1003

Correspondence between the domain name and the IP address of each computer is as

shown in the table below.

Table Correspondence between domain names and IP addresses

Domain name IP address Domain name IP address

PC1001.example.com 172.16.0.1
GATEWAY.example.com

172.16.0.101
172.31.0.101PC1002.example.com 172.16.0.2

PC1003.example.com 172.16.0.3 SV01.example.com 172.31.0.91

… … SV01.example.com 172.31.0.92

PC2001.example.com 172.31.0.1 SV01.example.com 172.31.0.93

PC2002.example.com 172.31.0.2

PC2003.example.com 172.31.0.3

… …

 - 9 -

Subquestion 1

From the answer group below, select the correct answers to be inserted into the blanks
 in the following description.

A name server has a definition file for searching for IP addresses from domain names. In

this file, a name server is defined as follows:

<Domain name to be defined >. IN NS <Domain name of name server>.

Moreover, correspondence between a domain name and an IP address is defined as

follows:

<Domain name>. IN A <IP address>

In the case where GATEWAY.example.com is a name server, some of the statements in the

definition file that this name server has are shown below.

example.com. IN NS A .example.com.

localhost.example.com. IN A 127.0.0.1
PC1001.example.com. IN A 172.16.0.1
PC1002.example.com. IN A 172.16.0.2
PC1003.example.com. IN A 172.16.0.3

…
GATEWAY.example.com. IN A 172.16.0.101
GATEWAY.example.com. IN A B

PC2001.example.com. IN A 172.31.0.1
PC2002.example.com. IN A 172.31.0.2
PC2003.example.com. IN A 172.31.0.3

…
GATEWAY-1.example.com. IN A 172.16.0.101
GATEWAY-2.example.com. IN A 172.31.0.101

SV01.example.com. IN A 172.31.0.91
SV01.example.com. IN A 172.31.0.92
SV01.example.com. IN A 172.31.0.93

Answer group:

a) 127.0.0.1 b) 172.31.0.91 c) 172.31.0.101

d) GATEWAY e) localhost f) SV01

 - 10 -

Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks
 in the following description.

In a DNS, a client which queries with a name server is called a resolver.

If IP addresses belonging to different subnetworks are defined for the same domain name,

then the name server returns, on a priority basis, the IP addresses that belong to the same

subnetwork to which the resolver belongs. This mechanism is applied in the case of the

definition of C .example.com.

On the other hand, if different IP addresses belonging to the same subnetwork are defined

for the same domain name, then the name server returns those IP addresses cyclically in

the order of definition. This mechanism is called round robin, and is used to distribute

accesses to the server. This mechanism is applied in the case of the definition of
D .example.com.

Answer group:

a) GATEWAY-1 b) GATEWAY-2 c) GATEWAY

d) localhost e) SV01

 - 11 -

Q4. Read the following description of a program and the program itself, and then answer

Subquestions 1, 2 and 3.

[Program Description]

This is a subprogram called TowerHanoiGame that move sequence of n disks in peg

FROM to peg TO with the same rule.

1) Procedures are as follows:

The Towers of Hanoi game is an example of problem whose solution demands

recursion. The game consists of a board with three vertical pegs labeled FROM,

INTERMEDIATE, and TO, and sequence of n disks with holes in their centers. The

radius of the disks are in an arithmetic progression (e.g., 5cm, 6cm, 7cm…) and are

mounted on the peg FROM. The rule is that no disk may be above a smaller disk on the

same peg. The objective of the game is to move all the disks from peg FROM to peg TO,

one disk at a time, without violating the rule.

The general solution to the Tower of Hanoi game is naturally recursive:

Part 1: move the smaller n-1 disks from peg FROM to peg INTERMEDIATE

Part 2: move the remaining disk from peg FROM to peg TO

Part 3: move the smaller n-1 disks from peg INTERMEDIATE to peg TO

The first and third steps are recursive: apply the complete solution to n-1 disks. In the

case n = 1, move this disk from peg FROM to peg TO.

2) Argument specification for the subprograms are given in the following tables.

Table 1 TowerHanoiGame arguments

Variable name
Input/
Output

Meaning

N Input Number of disks

FROM Input
The name of peg where N disks are mounted
before running this subprogram

INTERMEDIATE Input
The name of peg where disks could be moved
to or from during running this subprogram

TO Input
The name of peg where N disks are finally
mounted after running this subprogram

FROM INTERMEDIATE TO

 - 12 -

Table 2 Println argument

Variable
Input/
Output

Meaning

Str Input
Character string displayed in the screen in one
line.

[Program]

 o Program name: TowerHanoiGame (n, FROM, INTERMEDIATE, TO)

n = 1

 Println("Move the top disk from peg " + FROM + " to peg " + TO)

 A

 B

 C

Subquestion 1

From the answer group below, select the correct answers to be inserted into the blanks
 in the above program.

Answer group:

a) TowerHanoiGame (1, FROM, INTERMEDIATE, TO)

b) TowerHanoiGame (1, FROM, TO, INTERMEDIATE)

c) TowerHanoiGame (n-1, FROM, INTERMEDIATE, TO)

d) TowerHanoiGame (n-1, FROM, TO, INTERMEDIATE)

e) TowerHanoiGame (n-1, INTERMEDIATE, FROM, TO)

f) TowerHanoiGame (n-1, INTERMEDIATE, TO, FROM)

g) TowerHanoiGame (n-1, TO, INTERMEDIATE, FROM)

h) TowerHanoiGame (n-1, TO, FROM, INTERMEDIATE)

 - 13 -

Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks
D through I .

Note: Answers could be the same.

The solution for 3 disks is produced by the call

TowerHanoiGame (3, "FROM ", "INTERMEDIATE ", "TO");

The output is as below:

Move the top disk from peg FROM to peg TO

D
E
F
G
H
I

Answer group:

a) Move the top disk from peg FROM to peg INTERMEDIATE

b) Move the top disk from peg FROM to peg TO

c) Move the top disk from peg INTERMEDIATE to peg FROM

d) Move the top disk from peg INTERMEDIATE to peg TO

e) Move the top disk from peg TO to peg FROM

f) Move the top disk from peg TO to peg INTERMEDIATE

Subquestion 3

From the answer group below, select the correct answers to be inserted into the blanks
J through L .

The Towers of Hanoi game moves the disks 7 times for 3 disks (n=3).

This program moves the disks J times for 4 disks, K times for 5 disks,

and L times for n disks.

Answer group:

 a) 11 b) 15 c) 31

 d) 32 e) 2n +1 f) 2n -1

 - 14 -

Q5. Read the following description of a program design, and then answer Subquestion.

[Program Description]

One program is developed to classify the students into two classes X and Y at a training

center. Class X contains the more competent students and Class Y contains less competent

students who didn’t pass the tests that organized in the center. The center has the

appropriate training plans for each class to get best result.

1) There are 80 students registered for the training.

2) Each test consists of 80 questions. The questions are classified by the topics. The

number of questions and minimum number of correct answers (pass criteria) in each

topic for each test is shown in the Table1.

Table1 Topic_Table (Number of questions for each topic and pass test criteria)

 0 1  Column

Row


Number of
questions

Minimum
number of

correct
answers

Topic’s comment

0 6 4 Topic 1: Computer Science fundamentals
1 40 32 Topic 2: Computer system
2 10 6 Topic 3: System development and operation
3 6 4 Topic 4: Network Technology
4 6 4 Topic 5: Database Technology
5 6 4 Topic 6: Security and Standardization
6 6 4 Topic 7: Computerization and management

3) 80 questions are ordered by the topics as shown below:

Questions 1 to 6 belong to Topic 1

Questions 7 to 46 belong to Topic 2

Questions 47 to 56 belong to Topic 3

Questions 57 to 62 belong to Topic 4

Questions 63 to 68 belong to Topic 5

Questions 69 to 74 belong to Topic 6

Questions 75 to 80 belong to Topic 7

4) StudentID and test results of 80 questions (1: correct, 0: incorrect) for all 80 students

are stored in the Master_Table as shown in the Table 2.

 - 15 -

Table2 Master_Table

Row

StudentID

0 1 2 3 4 5 6 … j .. 77 78 79 80
pass

81 Column
0 1 1 1 0 1 0 0 .. . 1 1 1 1
1 2 1 1 1 0 0 1 1 1 0 1
2 3 1 1 1 1 1 1 1 1 1 1
3 4 1 1 1 0 1 0 0 1 1 1
 ..

i i

79 80 1 1 0 1 0 0 1 1 1 1

5) An element Master_Table [i,j], where (0 <= i <= 79, 1 <= j <= 80) , corresponds to

student “i” and the answer “j”.

6) For clarity, an example is given by extraction of the last row from the Table2. After a

test, the test answers made by the student whose StudentID is 80 are looked like this:

StudentID

0 1 2 3 4 5 6 … j … 77 78 79 80
pass
81

Row 79 80 1 1 0 1 0 0 … … 1 1 1 1
Question 1, 2, 4, … : correct answer
Question 3, 5, 6, … : incorrect answer

7) After the test, the students that pass the test (is selected by the criteria, described in

the Table1) are marked with pass = 1 in column pass, that means “correct answers” /

“number of questions in the Topic” is greater than or equal to 4/6, 32/40, 6/10, 4/6,

4/6, 4/6, 4/6, corresponding to Topic 1 to Topic 7, respectively.

8) After the test, all the records of the passed students are copied to a table class_X,

and rest of the records are copied to a table class_Y. This is done by the subroutine

copy().

 - 16 -

 [Flowchart]

0  Master_Table [i,81]

0  i

Scan Row
i > 79

Test pass criteria

j: first, last, 1

Master_Table[i,j] = 1

Yes

correct + 1  correct

No

Yes

No

OK + 1  OK

 i + 1  i

 0  topic
0  OK
0  last

Topics
 topic > 6

Topics

 last + 1  first
  last

 topic + 1  topic

1  Master_Table [i,81]

No

Yes

copy ()

Scan Row

C

A



Start

End

 0  correct

Test pass criteria

B

(See Note)

Note: The specification of the loop
conditions is as follows:

 variable name: initial value,
 terminal value, increment

 - 17 -

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks
A through C in the above flowchart.

And select the correct answer to be inserted into the blank D in the following

description.

After execution of the process indicated by the arrow , when the variable Topic = 2,

the correct combination of values for the variables first and last are D .

Answer group for A:

a) first + Topic_Table[topic, 0] b) first + Topic_Table [topic, 0] + 1

c) last + Topic_Table [topic, 0] d) last + Topic_Table [topic, 0] + 1

Answer group for B:

a) correct > 0 b) correct = 1

c) correct <= Topic_Table [Topic, 1] d) correct = Topic_Table [Topic, 1]

e) correct >= Topic_Table [Topic, 1]

Answer group for C:

a) correct > 0 b) correct = 1

c) correct = 6 d) correct = 7

e) OK > 0 f) OK = 1

g) OK = 6 h) OK = 7

Answer group for D:

a) first = 1, last = 6 b) first = 7, last = 45

c) first = 6, last = 46 d) first = 7, last = 46

e) first = 47, last = 56 f) first = 57, last = 62

 - 18 -

Select one question from Q6 through Q9, mark s in the selection area on the answer
sheet, and answer the question.
If two or more questions are selected, only the first question will be graded.

Q6. Read the following description of a C program and the program itself, and then

answer Subquestion.

[Program Description]

To include a character string parameter in the URL during a request to CGI, the string

parameter must be converted according to a predetermined transmission rule, and then

transmitted. The program URLEncode is used for the conversion.

1) The string parameter to be converted consists of ASCII characters. Assume that no

null character (character code 0x00) is included in the string parameter.

2) The conversion rule is as follows:

(i) Alphanumeric characters (0x30 - 0x39, 0x41 - 0x5A, 0x61 - 0x7A) and “@”

(0x40), “*” (0x2A), “-” (0x2D), “.” (0x2E), “_” (0x5F) are not converted. (These

characters are called non-conversion characters hereinafter).

(ii) Characters not included in (i) are converted to 3 characters consisting of “%”

followed by 2-digit hexadecimal character code. For instance, the character with

the character code 0x5E is converted to “%5E”.

3) The specification of function URLEncode is as follows:

Format: void URLEncode(unsigned char *input,
unsigned char *output)

Arguments: input Pointer to the char type array that stores the character string

to be converted

output Pointer to the char type array that stores the converted

character string

4) Assume that the array pointed by output has adequate space to store the converted

character string.

5) For example, the result of conversion of the string parameter “Hi!” is as shown in

the figure below.

'H'
（0x48）

'i'
（0x69）

'!'
（0x21）

'\0'
（0x00）

'H'
（0x48）

'i'
（0x69）

'%'
（0x25）

'2'
（0x32）

'1'
（0x31）

'\0'
（0x00）

“Hi!”

“Hi%21”

Fig. Example of conversion of string parameter

 - 19 -

6) The following function is available to the program:

Format: int replaceChar(unsigned char c)
Argument: c
Return value: If character c is a non-conversion character, 0 is returned.

Otherwise, 1 is returned.

[Program]

int replaceChar(unsigned char);

void URLEncode(unsigned char *input, unsigned char *output) {

 const unsigned char chars[] = "0123456789ABCDEF";

 while(*input != '\0') {

 if (replaceChar(A)) {
 *output++ = '%';

 *output++ = chars[B];

 *output++ = chars[C];
 } else {
 *output++ = *input;
 }

 D ;
 }
 *output = '\0';

}

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 in the above program.

Answer group for A and D:

a) &input b) (&input)++ c) (*input)++

d) **input e) **input++ f) *input

g) input h) input++

Answer group for B and C:

a) *input << 4 b) *input >> 4

c) *input & 0x0F d) *input & 0xF0

e) *input ^ 0x0F f) *input ^ 0xF0

g) *input | 0x0F h) *input | 0xF0

 - 20 -

Q7. Read the following description of a COBOL program and the program itself, and

then answer Subquestions 1 and 2.

[Program Description]

This is a program that opens an input file containing the test results of all students in each

grade in a particular institution and obtains the total scores in five subjects. It sorts the

results in descending order of the total scores and writes them onto output files so that the

overall ranking in each grade can be determined.

1) Input file IN-FILE is a sequential file which has the following record format, and

stores the scores of all students in one grade. Here, a perfect score for each subject

is 100 points.

Class

number

2 digits

Student
number

2 digits

Name

20 digits

Japanese
language

3 digits

Mathe-
matics

3 digits

English
language

3 digits

Science

3 digits

Social
studies

3 digits

2) Output file OUT-FILE is a sequential file which has the following record format,

and stores data in descending order of the total scores.

Class number

2 digits

Student number

2 digits

Name

20 digits

Total score

3 digits

[Program]

(Line number)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

DATA DIVISION.
FILE SECTION.
FD IN-FILE.
01 IN-REC PIC X(39).
FD OUT-FILE.
01 OUT-REC PIC X(27).
SD SORT-FILE.
01 SORT-REC.
 02 CLASS-NO PIC 9(2).
 02 STUDENT-NO PIC 9(2).
 02 STUDENT-NAME PIC X(20).
 02 TOTAL PIC 9(3).
WORKING-STORAGE SECTION.
01 W-IN-REC.
 02 STUDENT-ID.
 03 CLASS-NO PIC 9(2).
 03 STUDENT-NO PIC 9(2).
 03 STUDENT-NAME PIC X(20).
 02 SCORE PIC 9(3) OCCURS 5.

 - 21 -

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

01 READ-STATUS PIC X(1) VALUE SPACE.
 88 AT-END VALUE "E".
01 K PIC 9(1).
PROCEDURE DIVISION.
SORT-PROCEDURE.
 SORT SORT-FILE DESCENDING KEY TOTAL
 INPUT PROCEDURE IS READ-DATA
 GIVING OUT-FILE.
 STOP RUN.
READ-DATA.
 OPEN INPUT IN-FILE.
 PERFORM UNTIL AT-END
 READ IN-FILE AT END
 A
 NOT AT END
 MOVE IN-REC TO W-IN-REC
 PERFORM RELEASE-DATA
 END-READ
 END-PERFORM.
 CLOSE IN-FILE.
RELEASE-DATA.
 B .
 MOVE ZERO TO TOTAL.
 PERFORM VARYING K FROM 1 BY 1 UNTIL K > 5
 COMPUTE TOTAL = TOTAL + SCORE(K)
 END-PERFORM.
 RELEASE SORT-REC.

Subquestion 1

From the answer group below, select the correct answers to be inserted into the blanks

 in the above program.

Answer group:

a) INITIALIZE SORT-REC

b) MOVE SPACE TO READ-STATUS

c) MOVE SPACE TO SORT-REC

d) MOVE STUDENT-ID TO SORT-REC

e) PERFORM RELEASE-DATA

f) SET AT-END TO TRUE

 - 22 -

Subquestion 2

The program will be changed in such a way that the numbers of students and grade

average points of all subjects will be displayed at the end of the program. From the

answer group below, select the correct answers to be inserted into the blanks

in the following table showing description of changes in the program.

Here, the number of students is assumed to be in the 1 to 9,999 range, and the average

scores are truncated to 2 decimal places.

Action Description of changes in program

To be added
between line
numbers 22 and
23.

01 STATISTICS.
 02 STUDENT-TOTAL PIC 9(4) VALUE ZERO.
 02 SUB-TOTAL PIC 9(8) VALUE ZERO OCCURS 5.
 02 AVERAGE PIC 999.9.

To be added
between line
numbers 27 and
28.

DISPLAY "STUDENT:".
DISPLAY STUDENT-TOTAL.
DISPLAY "AVERAGE:".
PERFORM VARYING K FROM 1 BY 1 UNTIL K > 5
 COMPUTE AVERAGE = SUB-TOTAL(K) / STUDENT-TOTAL
 DISPLAY AVERAGE
END-PERFORM.

To be added
between line
numbers 44 and
45.

 C

To be added after
line number 46.

 D .

Answer group:

a) COMPUTE STUDENT-TOTAL = STUDENT-TOTAL + 1

b) COMPUTE STUDENT-TOTAL = STUDENT-TOTAL + K

c) COMPUTE SUB-TOTAL(K) = SUB-TOTAL(K) + SCORE(K)

d) MOVE K TO STUDENT-TOTAL

e) MOVE SCORE(K) TO SUB-TOTAL(K)

f) MOVE TOTAL TO SUB-TOTAL(K)

 - 23 -

Q8. Read the following description of a Java program and the program itself, and then

answer Subquestion.

[Program Description]

The program will read in numbers from the user, then search the number in the predefined

sorted array.

In the program, a binary search algorithm is used for finding the number.

The binary search begins by comparing the number to the one in the middle of the array.

If not matched, it is obvious whether the number would belong before or after that middle

number, because the numbers in the array are sorted. The search then continues through

the correct half in the same way.

[Program]

public class BinarySearch {
 private long[] a;

 private int numberOfElements;

 public BinarySearch(int max) {
 a = new long[max];
 numberOfElements = 0;
}

public int size() {
 return numberOfElements;
}

public int search(long searchKey) {
 return BSearch(searchKey, 0, numberOfElements - 1);
}

private int BSearch(long searchKey, int lowerBound, int upperBound) {
 int currentPosition;

 currentPosition = (lowerBound + upperBound) / 2;
 if (a[currentPosition] == searchKey)
 return currentPosition;
 else if (lowerBound > upperBound)
 return numberOfElements;
 else
 {
 if (A)
 return BSearch(searchKey, currentPosition + 1, upperBound);
 else
 return BSearch(searchKey, B , currentPosition - 1);
 }
}

 - 24 -

public void insert(long value) {
 a[numberOfElements] = value;
 numberOfElements++;
}

public static void main(String[] args) {
 int maxSize = 100;
 BinarySearch br = new BinarySearch(maxSize);

 br.insert(121);
 br.insert(130);
 br.insert(150);
 br.insert(226);
 br.insert(314);
 br.insert(369);
 br.insert(444);
 br.insert(527);
 br.insert(695);
 br.insert(719);
 br.insert(723);
 br.insert(808);
 br.insert(944);
 br.insert(1017);
 br.insert(1053);
 br.insert(1296);

 int searchKey = Integer.parseInt(args[0]);
 if (C)
 System.out.println("Found " + searchKey);
 else
 System.out.println("Can't find " + searchKey);
 }
}

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 in the above program.

Answer group for A:

a) a[currentPosition] < searchKey

b) a[currentPosition] > searchKey

c) a[currentPosition] == searchKey

d) a[currentPosition+1] > searchKey

Answer group for B:

a) lowerBound b) lowerBound + 1

c) upperBound d) upperBound + 1

 - 25 -

Answer group for C:

a) br.search(searchKey)!=br.size()

b) br.search(searchKey)!=br.size()-1

c) br.search(searchKey)==br.size()

d) br.search(searchKey)==br.size()-1

 - 26 -

Q9. Read the following description of an assembler program and the program itself, and

then answer Subquestions 1 and 2.

[Program 1 Description]

Program 1 (SFT1) is a subprogram that counts the number of “1” bits contained in one

word as shifting a mask to the right, and sets the counted number in GR0.

Data to be
processed

Mask

0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0

Mask is shifted to the right.

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0 (Bit number)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0 (Bit number)

Fig. 1 Method of processing by Program 1

1) The main program loads the data to be processed into GR1 and calls the subprogram.

2) The 15th through 0th bits in the given data are compared with the mask in sequence.

The number of bits whose value is 1 is counted, and the counted number is then set

in GR0.

3) When control is returned from the subprogram, the contents of general-purpose

registers GR1 through GR7 are restored to the original values.

[Program 1]

SFT1 START
 RPUSH
 LD GR2,MASK
 LAD GR0,0
LOOP LD GR3,GR2
 AND GR3,GR1
 JZE SKIP
 ADDA GR0,=1
SKIP SRL GR2,1

 A
 RPOP
 RET
MASK DC #8000
 END

α

 - 27 -

[Program 2 Description]

Program 2 (SFT2) is a subprogram that counts the number of bits whose value is 1 by

always comparing the lowest-order bit with the mask as the given data is shifted to the

right so that the number of instruction executions can be smaller than in Program 1, and

sets the counted number in GR0.

Data to be
processed

Mask

0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0

Data is shifted to the right.

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0 (Bit number)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0 (Bit number)

Fig. 2 Method of processing by Program 2

[Program 2]

SFT2 START
 RPUSH
 LAD GR0,0
LOOP LD GR3,GR1

 B
 ADDA GR0,GR3
 SRL GR1,1

 A
 RPOP
 RET
 END

Subquestion 1

From the answer groups below, select the correct answers to be inserted into the blanks

 in Programs 1 and 2.

Answer group for A:

a) JMI LOOP b) JNZ LOOP

c) JUMP LOOP d) JZE LOOP

β

 - 28 -

Answer group for B:

a) AND GR3,=#0001 b) OR GR3,=#0001

c) AND GR3,=#1000 d) OR GR3,=#1000

e) AND GR3,=#FFFF f) OR GR3,=#FFFE

Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks

 in the following description.

If the main program loads #0555 into GR1 and calls Programs 1 and 2, then the number

of executions of instruction β in Program 2 is smaller by C than the number of

executions of instruction α in Program 1.

The number of executions of instruction α in Program 1 is equal to the number of

executions of instruction β in Program 2 when the bit value of bit number D in

the data that the main program loads into GR1 is E .

Answer group:

a) 0 b) 1 c) 5 d) 6 e) 7

f) 8 g) 9 h) 10 i) 14 j) 15

 - 29 -

Select one question from Q10 through Q13, mark s in the selection area on the
answer sheet, and answer the question.
If two or more questions are selected, only the first question will be graded.

Q10. Read the following description of a C program and the program itself, and then answer

Subquestions 1 and 2.

[Program 1 Description]

This program reads a nonempty source program written in C language from a standard

input, removes comments, and then outputs it to a standard output.

1) Description on the notation of source programs

(i) “Comments” handled by this program are character strings that start with “/*” and

end with “*/”, excluding those included in character constants, character string

literals, and comments.

(ii) The type of usable characters is as follows.

Space 0 @ P ` p

! 1 A Q a q

” 2 B R b r

3 C S c s

$ 4 D T d t

% 5 E U e u

& 6 F V f v

' 7 G W g w

(8 H X h x

) 9 I Y i y

* : J Z j z

+ ; K [k {

, < L \ l |

- = M] m }

. > N ^ n ~

/ ? O _ o

(iii) Description as shown below is not used.
 Nested comments

 Example /* aaaaa /* bbbbbb */ ccccc */
 Three consecutive graphic characters

 ??= ??(??/ ??' ??< ??> ??) ??! ??-

(iv) There are no grammatical errors.

 - 30 -

2) Program 1 removes comments in accordance with the following procedure. Since

the program simply processes the analyses of character constants, character string

literals and comments, they may not be recognized correctly depending on the

coding in source programs, resulting in a malfunction.

(i) When detecting a single quote or double quote, the program interprets it as the

beginning of a character constant or character string literal, and then uses function

quote to read and output the character string as it is until the program detects the

corresponding single quote or double quote.

(ii) When detecting “/*”, the program interprets it as the beginning of a comment and

skips characters before the first appearance of “*/”.

3) An execution example of the comment removal by Program 1 is shown below.

Input source program
/* This program uses fgets to display
 * a line from a file on the screen. */
#include <stdio.h>
int main(void)
{
 FILE *stream; /* file pointer */
 char line[100]; /* input stream */

 if((stream = fopen("crt_fgets.txt", "r")) != NULL)
 {
 if(fgets(line, 100, stream) == NULL)
 printf("fgets error\n"); /* error message */
 else
 printf("%s", line);
 fclose(stream);
 }
}

Output results after the removal of comments

#include <stdio.h>
int main(void)
{
 FILE *stream;
 char line[100];

 if((stream = fopen("crt_fgets.txt", "r")) != NULL)
 {
 if(fgets(line, 100, stream) == NULL)
 printf("fgets error\n");
 else
 printf("%s", line);
 fclose(stream);
 }
}

Fig. Execution Example of the Comment Removal

 - 31 -

 [Program 1]

#include <stdio.h>
void quote(char);

main()
{
 int c1, c2;

 while ((c1 = getchar()) != EOF) {
 /* detection of single quote */
 if (c1 == '\'') quote('\'');
 /* detection of double quote */
 else if (c1 == '\"') quote('\"');
 /* detection of slash */
 else if (c1 == '/') {
 c2 = getchar();
 /* when the next character is an asterisk */
 if (c2 == '*') {
 /* removal of comment character string */
 while (1) {
 while ((c1 = getchar()) != '*');
 c2 = getchar();
 if (c2 == '/') break;
 }
 }
 /* other cases */
 else {
 putchar(c1);
 putchar(c2);
 }
 }
 else putchar(c1); /* one character read is outputted as it is */
 }
}

void quote(char c)
{ /* extraction of character constant and character string literal */
 char cc;

 putchar(c);
 while ((cc = getchar()) != c) putchar(cc);
 putchar(cc);
}

 - 32 -

Subquestion 1

From the answer group below, select the coding that causes wrong operation when it is

entered into program 1.

Answer group:

a) /* "aaaaaaa" */

b) /* aaa 'a' */

c) if (c == '\'') {

d) printf(" \' ");

e) printf("aaa /* comment */ \n");

[Program 2 Description]

To solve the problem pointed out in 2) of [Program 1 Description], Program 2 is then

written as follows.

1) The process to be implemented is divided into the three modes: character constant,

character string literal, and comment.

2) An appearance of a single quote switches the “character constant mode” between

ON and OFF. However, this does not apply to a piece of coding which is an

expanded representation using a “\”, to a piece of coding within a character string

literal, or to a piece of coding within a comment.

3) An appearance of double quotes switches the “character string literal mode” between

ON and OFF. However, this does not apply to a piece of coding which is an

expanded representation using a “\”, to a piece of coding within a character constant,

or to a piece of coding within a comment.

4) An appearance of “/*” and “*/” switches the “comment mode” between ON and

OFF. However, this does not apply to a piece of coding within a character constant

or to a piece of coding within a character string literal.

 - 33 -

[Program 2]

#include <stdio.h>
main()
{
 int c1, c2;
 int c_mode = 0; /* set comment mode to off */
 int quote1 = 0; /* set character constant mode to off */
 int quote2 = 0; /* set character string literal mode to off */

 for (c1 = getchar(); (c2 = getchar()) != EOF; c1 = c2) {

 if (!c_mode) { /* when comment mode is off */
 /* '\' in character constant or character string literal? */

 if (A && c1 == '\\') {
 putchar(c1);
 putchar(c2);
 c2 = getchar();
 continue;
 }
 /* single quote which is not inside a character string literal? */
 else if (!quote2 && c1 == '\'')

 B ;
 /* double quote which is not inside a character constant? */
 else if (!quote1 && c1 == '\"')

 C ;
 /* '/' and '*' which is not inside a character constant
 and character string literal? */

 else if (D && c1 == '/' && c2 == '*') {

 E ;
 c2 = getchar();
 continue;
 }
 putchar(c1);
 }

 else {
 if (c1 == '*' && c2 == '/') { /* end of comment? */

 E ;
 c2 = getchar();
 }
 }
 }
 putchar(c1);
}

 - 34 -

Subquestion 2

From the answer groups below, select the correct answers to be inserted into the blanks
 in Program 2.

Answer group for A and D:

a) !quote1 b) !quote2

c) (!quote1 || !quote2) d) (!quote1 && !quote2)

e) (quote1 || quote2) f) (quote1 && quote2)

Answer group for B, C and E:

a) c_mode = !c_mode b) c_mode = quote1 && quote2

c) quote1 = !quote1 d) quote1 = !quote2

e) quote1 = quote2 f) quote2 = !quote1

g) quote2 = !quote2 h) quote2 = quote1

 - 35 -

Q11. Read the following description of a COBOL program and the program itself, and

then answer Subquestion.

[Program Description]

Five television channels can be received in a certain geographical area. This program

reads the view data file that records TV programs viewed by surveyed households in that

area on a given day, and the TV program data file that records the TV program data on the

same day. It then calculates the average audience rating and prints it. The program

rounds down the time in units of one minute. For instance, the time 10:00 is the figure

obtained by rounding down the time between 10:00:00 and 10:00:59.

1) The view data file (VIEW-FILE) is a sequential file with the following record

format:

Channel No.
2 digits

Detection start
time

Detection end
time

Hour
2 digits

Minute
2 digits

Hour
2 digits

Minute
2 digits

(i) The view data file stores the audience data for a given day collected from the

surveyed 600 sample households.

(ii) Assume that there is one television set per household.

(iii) Assume that the channel numbers range from 01 to 05.

(iv) A record shows the channel viewed by a given household, indicating the “channel

no.”, the “detection start time” and the “detection end time.”

(v) Audience data is obtained by detecting the channels viewed by surveyed

households at 00 second of every minute.

For instance, suppose that a certain household viewed TV from 10:00:30 to

10:05:30, during which it changed channels as follows:

01

02

03

10:00:00Channel 10:01:00 10:02:00 10:03:00 10:04:00 10:05:00 10:06:00

 - 36 -

Since channels are detected at 00 second of every minute, the data is recorded in

the view file, rounded down in minute units as follows. Channel 03 was viewed

but not recorded.

0110011002
0210031004
0110051005

(vi) The range of the detection start time and the detection end time is from 00:00 to

23:59. No data extends to the second day.

(vii) The detection start time is equal to or less than the detection end time.

2) The program data file (PROGRAM-FILE) is a sequential file with the following

record format:

Channel No.
2 digits

Program start time Program end time
Program title

50 digits Hour
2 digits

Minute
2 digits

Hour
2 digits

Minute
2 digits

(i) The program data file stores program data for 5 channels, on the same day as in the

view data file.

(ii) The range of the program start time and the program end time is from 00:00 to

23:59. No data extends to the second day.

(iii) The program start time is equal to or less than the program end time.

(iv) A record shows that a program is broadcast from the “program start time” to the

“program end time.”

3) The program executes as follows:

(i) The view count table (VIEW-COUNT-TABLE) is a two-dimensional table

consisting of 5 (channels)  1,440 (minutes). It summarizes the number of

households by channel viewed in minute units and enters the data in each category

of the table.

(ii) The average audience rating of a TV program is obtained using the following

equation:

Average audience rating of program (%)

 = (Sum of the time during which each household viewed that program)

 / (Number of sample households  broadcast time of the program)  100

 - 37 -

(iii) The channel, program start time, program end time, average audience rating (in

percent, to the first decimal place), and the program name are printed in the order

in which programs were read from the program data file, in the following format:

from
2320
0430

-
-
-

to
2359
0439… …

program-title
Sports News
Good Morning…

rating(%)
 8.3
 1.7…

channel
 02
 04…

[Program]

DATA DIVISION.
FILE SECTION.
FD VIEW-FILE.
01 VIEW-REC.
 05 VIEW-CHANNEL PIC 99.
 05 VIEW-START-HHMM.
 10 VIEW-START-HH PIC 99.
 10 VIEW-START-MM PIC 99.
 05 VIEW-END-HHMM.
 10 VIEW-END-HH PIC 99.
 10 VIEW-END-MM PIC 99.
FD PROGRAM-FILE.
01 PROGRAM-REC.
 05 PROG-CHANNEL PIC 99.
 05 PROG-START-HHMM.
 10 PROG-START-HH PIC 99.
 10 PROG-START-MM PIC 99.
 05 PROG-END-HHMM.
 10 PROG-END-HH PIC 99.
 10 PROG-END-MM PIC 99.
 05 PROGRAM-TITLE PIC X(50).
FD OUT-FILE.
01 OUT-REC PIC X(100).
WORKING-STORAGE SECTION.
01 SAMPLE-SIZE PIC 9(4) VALUE 600.
01 M PIC 9(4).
01 END-OF-FILE PIC X.
01 START-MMMM PIC 9(4).
01 END-MMMM PIC 9(4).
01 SUMMATION PIC 9(9) BINARY.
01 PROG-RATING PIC ZZ9.9.
01 VIEW-COUNT-TABLE.
 05 CHANNEL OCCURS 5.
 10 COUNT-OF-MINUTE OCCURS 1440 PIC 9(4) BINARY.

 - 38 -

01 O-DATA.
 05 FILLER PIC X(3) VALUE SPACE.
 05 O-PROG-CHANNEL PIC 99.
 05 FILLER PIC X(3) VALUE SPACE.
 05 O-PROG-START-HHMM.
 10 O-PROG-START-HH PIC 99.
 10 O-PROG-START-MM PIC 99.
 05 FILLER PIC X(3) VALUE " - ".
 05 O-PROG-END-HHMM.
 10 O-PROG-END-HH PIC 99.
 10 O-PROG-END-MM PIC 99.
 05 FILLER PIC X(2) VALUE SPACE.
 05 O-PROG-RATING PIC ZZ9.9.
 05 FILLER PIC X(6) VALUE SPACE.
 05 O-PROGRAM-TITLE PIC X(50).
01 TITLE-LINE PIC X(100)
 VALUE "channel from - to rating(%) program-title".
PROCEDURE DIVISION.
MAIN-PARAGRAPH.
 PERFORM EXPAND-VIEW-COUNT.
 PERFORM CALCULATE-RATING-AND-PRINT.
 STOP RUN.
EXPAND-VIEW-COUNT.

 A .
 OPEN INPUT VIEW-FILE.
 MOVE "N" TO END-OF-FILE.
 PERFORM UNTIL END-OF-FILE = "Y"
 READ VIEW-FILE AT END
 MOVE "Y" TO END-OF-FILE
 NOT AT END
 PERFORM SET-VIEW-COUNT
 END-READ
 END-PERFORM.
 CLOSE VIEW-FILE.
CALCULATE-RATING-AND-PRINT.
 OPEN INPUT PROGRAM-FILE OUTPUT OUT-FILE.
 WRITE OUT-REC FROM TITLE-LINE AFTER ADVANCING 1.

 B .
 PERFORM UNTIL END-OF-FILE = "Y"
 READ PROGRAM-FILE AT END
 MOVE "Y" TO END-OF-FILE
 NOT AT END
 PERFORM CALCULATE-RATING
 MOVE PROG-CHANNEL TO O-PROG-CHANNEL
 MOVE PROG-START-HHMM TO O-PROG-START-HHMM
 MOVE PROG-END-HHMM TO O-PROG-END-HHMM
 MOVE PROG-RATING TO O-PROG-RATING
 MOVE PROGRAM-TITLE TO O-PROGRAM-TITLE
 WRITE OUT-REC FROM O-DATA AFTER ADVANCING 1
 END-READ
 END-PERFORM.
 CLOSE PROGRAM-FILE OUT-FILE.

 - 39 -

SET-VIEW-COUNT.
 COMPUTE START-MMMM = VIEW-START-HH * 60 + VIEW-START-MM + 1.
 COMPUTE END-MMMM = VIEW-END-HH * 60 + VIEW-END-MM + 1.
 PERFORM VARYING M FROM START-MMMM BY 1 UNTIL M > END-MMMM

 C
 END-PERFORM.
CALCULATE-RATING.
 COMPUTE START-MMMM = PROG-START-HH * 60 + PROG-START-MM + 1.
 COMPUTE END-MMMM = PROG-END-HH * 60 + PROG-END-MM + 1.

 D .
 PERFORM VARYING M FROM START-MMMM BY 1 UNTIL M > END-MMMM

 E
 END-PERFORM.
 COMPUTE PROG-RATING ROUNDED

 = F .

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 in the above program.

Answer group for A, B and D:

a) COMPUTE SUMMATION = END-MMMM - START-MMMM

b) INITIALIZE VIEW-COUNT-TABLE

c) MOVE "N" TO END-OF-FILE

d) MOVE "Y" TO END-OF-FILE

e) MOVE SAMPLE-SIZE TO SUMMATION

f) MOVE ZERO TO SUMMATION

g) MOVE ZERO TO VIEW-COUNT-TABLE

Answer group for C and E:

a) ADD 1 TO COUNT-OF-MINUTE(VIEW-CHANNEL M)

b) ADD 1 TO COUNT-OF-MINUTE(VIEW-CHANNEL M + 1)

c) ADD 1 TO SUMMATION

d) ADD COUNT-OF-MINUTE(PROG-CHANNEL M) TO SUMMATION

e) COMPUTE SUMMATION = COUNT-OF-MINUTE(PROG-CHANNEL M + 1)

f) COMPUTE SUMMATION = COUNT-OF-MINUTE(VIEW-CHANNEL M) + 1

g) MOVE 1 TO COUNT-OF-MINUTE(VIEW-CHANNEL M)

 - 40 -

Answer group for F:

a) 100 * SUMMATION / ((END-MMMM - START-MMMM) * (SAMPLE-SIZE + 1))

b) 100 * SUMMATION / ((END-MMMM - START-MMMM + 1) * SAMPLE-SIZE)

c) 100 * SUMMATION / (END-MMMM - START-MMMM) / SAMPLE-SIZE

d) 100 * SUMMATION / (END-MMMM - START-MMMM + 1) / (SAMPLE-SIZE + 1)

 - 41 -

Q12. Read the following description of a Java program and the program itself, and then

answer Subquestions 1 and 2.

[Program Description]

This program simulates the processing by an automated ticket gate installed at each

station of a railroad line comprising four stations A, B, C, and D, with A serving as the

starting point and D as the terminal point. On this line, the following two types of fare

certificates can be used: one-way ticket (hereinafter, “ticket”); and prepaid card

(hereinafter, “card”).

A fare on the line is decided based on the distance between stations. The fare for up to 4

kilometers is 120 yen (this fare is called the base fare). An amount of 30 yen is added for

each additional 2 kilometers. Any additional distance less than 2 kilometers is rounded

up to 2 kilometers. For example, if the distance is 7 kilometers, the fare is 180 yen.

The station of embarkation is recorded on a ticket when a passenger passes through the

automated ticket gate in that station to enter the platform area. When he/she passes

through the automated ticket gate to leave the platform area in the station of

disembarkation, the fare is calculated, and if the amount paid for the ticket is insufficient,

the gate is closed to prevent him/her from leaving the platform area. Once a ticket is

used, it becomes invalid. On this line, a passenger can enter the platform area through

the automated ticket gate in any station, thus being able to embark, regardless of the

station that issued the ticket. For instance, with a ticket issued at Station A, a passenger

can enter the platform area through the automated ticket gate in Station B.

The station of embarkation is recorded on a card when a passenger enters the platform

area through the automated ticket gate in that station. At this time, if the balance on the

card is zero, the gate is closed to prevent him/her from entering the platform area. When

he/she leaves the platform area through the automated ticket gate in the station of

disembarkation, a fare adjustment is processed. Namely, the fare is calculated and is

subtracted from the balance on the card. At this time, if this balance is less than the

amount of the fare, the gate is closed to prevent him/her from leaving the platform area.

Class Line represents the railroad line. Method getFare calculates the fare on the

basis of a given distance, and returns this information.

Class Gate signifies an automated ticket gate. Fields A, B, C and D in class Line are

instances of Gate, and represent the automated ticket gates installed at stations A, B, C

and D, respectively. The constructor and each method perform the following processing.

1) The constructor generates an instance of Gate. A station name is specified as the

first argument, and the distance from station A, which is the starting point of the line,

 - 42 -

is specified as the second argument.

2) Method enter performs processing when a passenger enters the platform area

through an automated ticket gate. If the fare certificate is not valid, the gate is

closed. If entrance processing is carried out normally, information on the station of

embarkation is recorded on this fare certificate.

3) Method exit performs processing when a passenger leaves the platform area

through an automated ticket gate. If the fare certificate is invalid in that, for

example, the amount (balance) on the fare certificate is insufficient, then the gate is

closed.

4) Methods open and close output messages for opening and closing a gate,

respectively.

Abstract class Ticket, which represents a fare certificate for this line, is inherited in

defining a ticket and a card. The constructor and each method perform the following

processing.

1) The constructor retains a purchase amount on the fare certificate as the initial value.

2) Method getValue returns the fare certificate amount (balance) as it is at the point

in time when it is called.

3) Method adjustValue performs fare adjustment processing if necessary.

4) Method deduct deducts the amount specified as an argument from the amount

(balance) of the fare certificate, and updates the amount (balance).

5) Method setOrigin records a specified Gate as the station of embarkation. If

null is specified, the record of the station of embarkation is deleted.

6) Method getOrigin returns the station of embarkation that is recorded. If this

station is not recorded, null is returned.

Class OneWayTicket represents a ticket, and class PrepaidCard represents a card. In

the processing of either fare certificate, an abstract method is implemented, and the

method in class Ticket is overridden, as necessary.

[Program 1]

public final class Line {
 public static final Gate A = new Gate("A", 0);
 public static final Gate B = new Gate("B", 5);
 public static final Gate C = new Gate("C", 8);
 public static final Gate D = new Gate("D", 14);

 public static int getFare(int distance) {
 return 120 + (Math.max(distance - 3, 0) / 2) * 30;
 }
}

 - 43 -

[Program 2]

public class Gate {
 private final String name;
 private final int distance;

 public Gate(String name, int distance) {
 this.name = name;
 this.distance = distance;
 }

 public void enter(Ticket ticket) {
 if (ticket.isValid() && ticket.getOrigin() == null) {

 A ;
 open();
 } else {
 close();
 }
 }

 public void exit(Ticket ticket) {
 Gate origin = ticket.getOrigin();
 if (origin != null) {
 int d = Math.abs(origin.distance - distance);
 int fare = Line.getFare(d);

 if (B) {
 ticket.adjustValue(fare);
 ticket.setOrigin(null);
 open();
 return;
 }
 }
 close();
 }

 private void open() { System.out.println(name + ": open"); }
 private void close() {
 System.out.println(name + ": closed");
 }
}

[Program 3]

public abstract class Ticket {
 private Gate origin;
 private int value;

 public Ticket(int value) {
 this.value = value;
 }

 - 44 -

 public int getValue() { return value; }

 public void deduct(int amount) { value -= amount; }

 public void setOrigin(Gate gate) { origin = gate; }

 public Gate getOrigin() { return origin; }

 public abstract void adjustValue(int amount);

 public abstract boolean isValid();
}

[Program 4]

public class OneWayTicket extends Ticket {
 private boolean valid = true;

 public OneWayTicket(int value) {

 C ;
 }

 public void setOrigin(Gate gate) {
 super.setOrigin(gate);
 if (gate == null)
 valid = false;
 }

 public void adjustValue(int amount) { }

 public boolean isValid() { return valid; }
}

[Program 5]

public class PrepaidCard extends Ticket {
 public PrepaidCard(int value) {

 C ;
 }

 public void adjustValue(int amount) { deduct(amount); }

 public boolean isValid() {
 return getValue() > 0;
 }
}

 - 45 -

Subquestion 1

From the answer groups below, select the correct answers to be inserted into the blanks

 in the above programs.

Answer group for A:

a) ticket.setOrigin(Line.A) b) ticket.setOrigin(Line.D)

c) ticket.setOrigin(null) d) ticket.setOrigin(this)

e) ticket.setOrigin(ticket)

Answer group for B:

a) ticket.getValue() < fare b) ticket.getValue() <= fare

c) ticket.getValue() == fare d) ticket.getValue() > fare

e) ticket.getValue() >= fare

Answer group for C:

a) super() b) super(this)

c) super(value) d) super(); this.value = value

e) this(value)

Subquestion 2

It was decided that a new type of fare certificate be sold. A fare certificate of this type

permits a passenger to freely embark or disembark at all stations within 24 hours from the

time that the fare certificate is issued. Twenty-four hours after such a fare certificate is

issued, the passenger can leave the platform area in any station but cannot enter any such

area. For this, it is desired that a new class that inherits abstract class Ticket be defined

to permit the use of this type of certificate without making any modification to class Gate.

Processing by the constructor and methods of this class are shown in the following table.

From the answer group below, select the correct answers to be inserted into the blanks

in the table. Here, value in the answer group is a field value of class Ticket, and it is

assumed that the initial value is set by the constructor and that the value is obtained by

method getValue.

 - 46 -

Constructor and methods Processing

Constructor D

Method getValue E

Method setOrigin The same as is defined in the superclass

Method getOrigin The same as is defined in the superclass

Method adjustValue No processing is performed (methods proper do not
contain any statements).

Method isValid F

Answer group:

a) 0 is returned at all times.

b) An amount that is theoretically too large to be spent in 24 hours is set as the initial

value of value.

c) Method deduct is called, with amount as an argument.

d) No processing is performed (methods proper do not contain any statements).

e) The base fare on the line is returned at all times.

f) The highest fare on the line (the maximum value among all fares) is set as the initial

value of value, and the fare certificate issuance time is recorded.

g) The same as is defined in the superclass

h) true is returned only when the call time is within 24 hours from the fare certificate

issuance time stored in the instance. In other cases, false is returned.

i) true is returned only when value is not less than the base fare on the line. In

other cases, false is returned.

j) true is returned only when value is not less than the highest fare on the line (the

maximum value among all fares). In other cases, false is returned.

 - 47 -

Q13. Read the following description of an assembler program and the program itself, and

then answer Subquestions 1 through 3.

[Program Description]

This is a subprogram BPSRH in which one word is searched for a specified bit pattern.

1) The main program sets the first address of the parameter area in GR1, and calls

BPSRH. The format of the parameter area is as follows:

2) In BPSRH, bits in the word to be searched are compared with the specified bit pattern

in descending order of bit number, and the highest bit number in the portion that first

matched is set in GR0; BPSRH then returns to the main program. If no portion is

matched, –1 is set in GR0, and BPSRH returns to the main program. In the following

example, the highest bit number in the portion that matched with the pattern is 12,

which is set in GR0.

Comparison

(GR1)＋0

＋1

＋2

15 0 (Bit number)…

0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

3) When returning from the subprogram, the contents of general-purpose registers GR1

through GR7 are restored to the original values.

 - 48 -

[Program]

(Line number)
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

BPSRH START
 RPUSH
 LD GR6,1,GR1
 LAD GR7,16
 SUBA GR7,GR6 ; GR7 <- (16 - n)
 LD GR2,2,GR1
 SLL GR2,0,GR7 ; With bit pattern left-justified
 LAD GR4,-1

 A ; Generation of mask pattern
 LAD GR0,-1 ; Initialization of return value
 LAD GR3,0 ; Initialization of comparison location pointer
 LD GR5,0,GR1
LOOP LD GR6,GR5 ; GR6 is for temporary use
 AND GR6,GR4
 CPL GR6,GR2 ; Comparison with bit pattern
 JZE FIND
 LAD GR3,1,GR3 ; Next comparison location is set.
 CPA GR3,GR7 ; Does uncompared portion contain n bits or more?
 JPL EXIT

 B
 JUMP LOOP
FIND LAD GR0,15 ; Calculation of bit number
 SUBA GR0,GR3
EXIT RPOP
 RET
 END

Subquestion 1

From the answer groups below, select the correct answers to be inserted into the blanks

 in the above program.

Answer group for A:

a) SLL GR4,0,GR6 b) SLL GR4,0,GR7

c) SRA GR4,0,GR6 d) SRA GR4,0,GR7

e) SRL GR4,0,GR6 f) SRL GR4,0,GR7

Answer group for B:

a) LD GR5,1,GR2 b) SLL GR3,1

c) SLL GR5,1 d) SRL GR3,1

e) SRL GR5,0,GR2 f) SRL GR5,0,GR3

g) SRL GR5,1

 - 49 -

Subquestion 2

From the answer group below, select the correct answer as the hexadecimal notation of

the value of GR5 when the following parameters are passed and control is just transferred

to the instruction labeled FIND.

(GR1)＋0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

＋1

＋2

Answer group:

a) 000D b) 1AD6 c) AD60

d) D000 e) D6B0

Subquestion 3

A subprogram RESERVE was created in which movie theater seats are reserved using a

subprogram BP1SRH for performing searches specializing in bit patterns comprising

consecutive 1’s.

From the answer groups below, select the correct answers to be inserted into the blanks

 in RESERVE.

1) The number of seats for reservation in the movie theater is 1,024. Seat numbers are

0 through 1023. Moreover, seats for reservation are divided in such a way that

every 16 seats with consecutive seat numbers constitute a group. A table for seat

control consists of 64 consecutive words. Bit number 15 of the first word

represents the state of seat number 0, and bit number 0 of the last word represents

the state of seat number 1023. When the corresponding bit in the table for seat

control is 1, the relevant seat is vacant. If the bit is 0, the relevant seat is booked.

Bit number

Seat number 0 16 1023

15 0… 15 0… 15 0…

 Bit values. 1: Vacant 0: Booked

Fig. Format of table for seat control (64 words)

2) In the main program, the number of seats to be booked, n (1 <= n <= 16), is set in

GR1, the beginning address of the table for controlling seats for reservation is set in

GR2, and RESERVE is called.

3) RESERVE secures a specified number of seats in such a way that all relevant seats are

consecutive and that no group is skipped in between. Vacant seats are searched for

 - 50 -

in sequence starting with seat number 0. If consecutive vacant seats are found,

these seats are placed in the “booked” state, the lowest seat number secured is set in

GR0, and control is returned to the main program. If no vacant seat is secured, –1 is

set in GR0, and control is returned to the main program.

4) When returning from the subprogram RESERVE, the contents of general-purpose

registers GR1 through GR7 are restored to the original values.

5) The format of the parameters given to BP1SRH are as follows.

 BP1SRH is a program in which line numbers 6 through 9 of BPSRH are replaced with

the following three sets of instructions.

LAD GR2,#8000
SRA GR2,-1,GR6
LD GR4,GR2

[Program]

RESERVE START
 RPUSH
 LD GR6,GR1 ; Save n
 LAD GR1,PARAM
 ST GR6,1,GR1 ; Preparation of parameters for calling BP1SRH (1)
 ST GR2,TBLADD ; Save beginning address of table for seat control
 LAD GR4,64,GR2
 LAD GR0,-1 ; Initialization of return value
LOOP CPL GR2,GR4 ; End of search?
 JZE EXIT
 LD GR5,0,GR2 ; Load one word from table for seat control
 ST GR5,0,GR1 ; Preparation of parameters for calling BP1SRH (2)
 CALL BP1SRH ; Searching for vacant seats in one word
 CPA GR0,=-1
 JNZ FIND
 LAD GR2,1,GR2 ; Going to search next word
 JUMP LOOP
FIND LAD GR3,15
 SUBA GR3,GR0 ; GR3 <- (15 - GR0)
 LAD GR7,#8000
 SRA GR7,-1,GR6

 C
 XOR GR7,=#FFFF ; GR7 <- 1110000111111111 (In case GR0 = 12, n = 4)
 AND GR5,GR7 ; Set at booked state.

 - 51 -

 ST GR5,0,GR2
 SUBL GR2,TBLADD ; Calculation of seat number

 D
 ADDA GR2,GR3
 LD GR0,GR2
EXIT RPOP
 RET
TBLADD DS 1
PARAM DS 2 ; Parameter areas for calling BP1SRH
 END

Answer group for C:

a) AND GR5,GR3 b) AND GR5,GR7

c) OR GR5,GR3 d) OR GR5,GR7

e) SRA GR7,0,GR3 f) SRL GR7,0,GR3

Answer group for D:

a) SLL GR2,1 b) SLL GR2,2

c) SLL GR2,4 d) SLL GR3,1

e) SLL GR3,2 f) SLL GR3,4

 - 52 -

Assembly Language Specifications

1. COMET II Hardware Specifications
1.1 Hardware Specifications

(1) One word is 16 bits, and the bit format is as follows:

Upper 8 bits Lower 8 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (Bit No.)

Sign (Negative:1, Positive:0)

(2) Main storage capacity is 65,536 words with address numbers 0 through 65,535.
(3) Numeric values are expressed as 16-bit binary numbers. Negative numbers are expressed in

complements of two.
(4) Control is sequential. COMET II utilizes a one-word or two-word instruction word.
(5) The COMET II has four types of registers: GR (16 bits), SP (16 bits), PR (16 bits) and FR (3 bits).

There are eight GR (General Register) registers, GR0 through GR7. These eight registers are used
for arithmetic, logical, compare and shift operations. Of these, GR1 through GR7 are also used as
index registers to modify addresses.
The stack pointer stores the address currently at the top of the stack.
The PR (Program Register) stores the first address of the next instruction.
The FR (Flag Register) consists of three bits: OF (Overflow Flag), SF (Sign Flag) and ZF (Zero
Flag). The following values are set, depending on the result generated by certain operation
instructions. These values are referenced by conditional branch instructions.

OF
When the result of an arithmetic operation instruction is out of the range of
–32,768 to 32,767, the value is 1, and in other cases, the value is 0.
When the result of a logical operation instruction is out of the range of
0 to 65,535, the value is 1, and in other cases, the value is 0.

SF When the sign of the operation result is negative (bit number 15 = 1), the value
is 1, and in other cases, the value is 0.

ZF When the operation result is 0 (all bits are 0), the value is 1, and in other cases,
the value is 0.

(6) Logical addition or logical subtraction: Treats the data to be added or subtracted as unsigned data,

and performs addition or subtraction.

 - 53 -

1.2 Instructions
Formats and functions of instructions are described in the following chart. When an instruction code
has two types of operands, the upper operand shows the instruction between registers and the lower
operand shows the instruction between register and main storage.

Instruction

Format

Description of instructions
FR

setting
Opcode Operand

(1) Load, store, load address instruction

LoaD LD
r1,r2 r1  (r2)

*1
r,adr [,x] r  (effective address)

STore ST r,adr [,x] Effective address  (r)


Load ADdress LAD r,adr [,x] r  effective address

(2) Arithmetic and logical operation instructions

ADD Arithmetic ADDA
r1,r2 r1  (r1) + (r2)



r,adr [,x] r  (r) + (effective address)

ADD Logical ADDL
r1,r2 r1  (r1) +L (r2)
r,adr [,x] r  (r) +L (effective address)

SUBtract Arithmetic SUBA
r1,r2 r1  (r1)  (r2)
r,adr [,x] r  (r)  (effective address)

SUBtract Logical SUBL
r1,r2 r1  (r1) L (r2)
r,adr [,x] r  (r) L (effective address)

AND AND
r1,r2 r1  (r1) AND (r2)

*1

r,adr [,x] r  (r) AND (effective address)

OR OR
r1,r2 r1  (r1) OR (r2)
r,adr [,x] r  (r) OR (effective address)

eXclusive OR XOR
r1,r2 r1  (r1) XOR (r2)
r,adr [,x] r  (r) XOR (effective address)

(3) Compare operation instructions

ComPare Arithmetic CPA

r1,r2
Performs an arithmetic compare or
logical compare operation on (r1) and
(r2) or (r) and (effective address), and
sets FR as follows, according to the
result of the compare operation.

FR value
C om pare result SF ZF

(r1) > (r2)
(r) > (effective address)

0 0

(r1) = (r2)
(r) = (effective address)

0 1

(r1) < (r2)
(r) < (effective address)

1 0

*1

r,adr [,x]

ComPare Logical CPL

r1,r2

r,adr [,x]

 - 54 -

 (4) Shift operation instructions

Shift Left Arithmetic SLA r,adr [,x]
Shifts (r) (excluding the sign bit) left
or right by the number of bits specified
by the effective address.
When a left shift is performed, those
bits that are left vacant by the shift
operation are filled with zeroes. When
a right shift is performed, those bits
that are left vacant by the shift
operation are filled with the same
value as the sign bit.

*2
Shift Right Arithmetic SRA r,adr [,x]

Shift Left Logical SLL r,adr [,x]
Shifts (r) (including the sign bit) left or
right by the number of bits specified
by the effective address.
Those bits that are left vacant by the
shift operation are filled with zeroes.

Shift Right Logical SRL r,adr [,x]

(5) Branch instructions

Jump on PLus JPL adr [,x]
Branches to the effective address,
depending on the value of FR. If
control does not branch to a new
address, execution continues with the
next instruction.

Value of FR in order to
branch

Instruc-
tion

OF SF ZF
JPL 0 0

JM I 1

JNZ 0

JZE 1

JOV 1



Jump on MInus JMI adr [,x]

Jump on Non Zero JNZ adr [,x]

Jump on ZEro JZE adr [,x]

Jump on OVerflow JOV adr [,x]

unconditional JUMP JUMP adr [,x] Branches unconditionally to the
effective address.

(6) Stack operation instructions

PUSH PUSH adr [,x] SP  (SP) L 1,
(SP)  effective address


POP POP r r  ((SP)),

SP  (SP) +L 1

(7) Call and return instructions

CALL subroutine CALL adr [,x]
SP  (SP) L 1,
(SP)  (PR),
PR  effective address 

RETurn from
subroutine RET PR  ((SP)),

SP  (SP) +L 1

(8) Other

SuperVisor Call SVC adr [,x]
Determine based on the effective
address as the argument. After the
execution, GR and FR are undefined. 

No OPeration NOP N/A

 - 55 -

Note) r, r1, r2 All of these represent GR. Values from GR0 to GR7 can be specified.
 adr This represents the address. A value from 0 to 65,535 can be

specified.
 x This represents GR used as the index register. A value from GR1 to GR7

can be specified.
 [] Square brackets ([]) indicate that the specification contained

in the brackets may be omitted.
 () The contents of the register or address contained in the parentheses

().
 Effective

address
A value produced by adding, through "logical addition," adr and the
contents of x, or the address pointed at by that value.

  This means that the operation result is stored in the left part
register or address.

 +L, L Logical addition and logical subtraction.
 Effective

address for
FR setting

 : Setting is performed.
*1 : Setting is performed, but 0 is set to OF.
*2 : Setting is performed, but the bit value sent from the register is

set to OF.
 : The value before execution is stored.

1.3 Character Set

(1) A JIS X0201 Romaji/katakana character set that uses 8-bit codes is used.
(2) Part of the character set is shown in the right table. Eight bits are used to represent one character;

the upper four bits indicate the column in the table, and the lower four bits indicate the row. For
example, the hexadecimal codes for the space character, "4," "H," and "\" are 20, 34, 48 and 5C,
respectively. The characters that correspond to the hexadecimal codes 21 to 7E (and A1 to DF
omitted in this table) are called "graphics characters." Graphics characters can be displayed
(printed) as characters on an output device.

(3) If any characters not listed in this table and the bit configuration for those characters is needed, they
are given in the problem.

Column

Row

02 03 04 05 06 07

0 Space 0 @ P ` p

1 ! 1 A Q a q

2 ” 2 B R b r

3 # 3 C S c s

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 ' 7 G W g w

8 (8 H X h x

9) 9 I Y i y

10 * : J Z j z

11 + ; K [k {

12 , < L \ l |

13 - = M] m }

14 . > N ^ n ~

15 / ? O _ o

 - 56 -

2 Specifications of the CASL II Assembly Language

2.1 Specifications of the language

(1) CASL II is an assembly language for the COMET II.
(2) A program consists of instruction lines and comment lines.
(3) One instruction is described in one instruction line, and cannot continue to the next line.
(4) Instruction lines and comment lines are written from the first character of the line in the following

description formats:

Line type Description format
Instruction

 line
With operand [label]{blank}{instruction code}{blank}{operand}[{blank}[comment]]

Without operand [label]{blank}{instruction code}[{blank}[{;}[comment]]]
Comment line [blank]{;}[comment]

(Note) [] Square brackets ([]) indicate that the specification contained in the
brackets may be omitted.

 { } Braces ({ }) indicate that the specification contained in the braces is
mandatory.

 Label Label is the name used to refer to the address of (the first word of) the
instruction from other instructions and programs. A label must be 1 to 8
characters in length, and the leading character must be an uppercase
alphabetic letter. Either uppercase alphabetic letters or numeric characters can
be used for the subsequent characters. Reserved words, GR0 through GR7,
are not available.

 Blank One or more space characters.
 Instruction

 code
The description format is defined by instruction.

 Operand The description format is defined by instruction.
 Comment Optional information such as memorandums that can be written in any

characters allowed by the processing system.

2.2 Instruction Types
CASL II consists of four assembler instructions (START, END, DS and DC), four macro instructions
(IN, OUT, RPUSH and RPOP) and machine language instructions (COMET II instructions). The
specifications are as follows:

Instruction t
ype

Label Instruction code Operand Function

Assembler i
nstruction

Label START [Execution start ad
dress]

Defines the top of a program.
Defines the starting address for
execution of a program.
Defines the entry name for
reference in other programs.

 END Defines the end of a program.
[label] DS Word length Allocates an area.
[label] DC Constant[, constan

t]
Defines a constant.

Macro instru
ction

[label] IN Input area, input
character length ar
ea

Input character data from input
devices.

[label] OUT Output area, outpu
t character length
area

Output character data from output
devices.

[label] RPUSH Stores the contents of GR in the stack

[label] RPOP Stores the contents of stack in GR

Machine lan
guage instru
ction

[label] (See "1.2 Instructions")

 - 57 -

2.3 Assembler Instructions
Assembler instructions are used for assembler control, etc.

(1) START [Execution start address]
The START instruction defines the top of a program.
The label name that is defined within this program specifies the execution start address. If the label is
specified, execution begins from the address, and if the label is omitted, execution begins from the
next instruction of the START instruction.

The label for this instruction can be referred to from other programs as the entry name.
(2) END

The END instruction defines the end of a program.
(3) DS Word length

The DS instruction allocates an area of the specified word length.
The word length is specified by a decimal constant ( 0). If "0" is specified for the word length of an
area, the area is not allocated, but the label is valid.

(4) DC Constant[, constant] 
The DC instruction stores the data that has been specified as a constant in (consecutive) words.
There are four types of constants: decimal constants, hexadecimal constants, character constants and
address constants.

Type of co
nstant

Format Description of instruction

Decimal co
nstant n

This instruction stores the decimal value specified by "n" as one word of
binary data. If "n" is outside of the range of –32,768 to 32,767, only the
lower 16 bits of n are stored.

Hexadecim
al constant #h

Assume "h" is a four-digit hexadecimal number. (Hexadecimal
notation uses 0 through 9 and A through F.) This instruction stores
the hexadecimal value specified by "h" as one word of binary data.
(0000  h  FFFF)

Character
constant

'character
 string'

This instruction allocates a continuous area for the number of
characters (> 0) in the character string. The first character is stored
in bits 8 through 15 of the first word, the second character is stored
in bits 8 through 15 of the second word, and so on, so that the
character data is stored sequentially in memory. Bits 0 through 7 of
each word are filled with zeroes.
Spaces and any of the graphics characters can be written in a
character string. Apostrophes (') must be written twice consecutively.

Address co
nstant

Label This instruction stores an address corresponding to the label name as
one word of binary data.

2.4 Macro Instructions
Macro instructions use a pre-defined group of instructions and operand data to generate a group of
instructions that performs a desired function (the word length is undefined).

(1) IN Input area, input character length area
The IN instruction reads one record of character data from a previously assigned input device.
The input area operand should be the label of a 256-word work area, and the input data is input in this
area beginning at the starting address, one character per word. No record delimiter code (such as a line
return code, when using a keyboard) is stored. The storage format is the same as character constants
with the DC instruction. If the input data is less than 256 characters long, the previous data is left as is
in the remaining portion of the input area. If the input data exceeds 256 characters, the excess
characters are ignored.
The input character length area should be the label of the one-word work area, and the character length
that was input (>= 0) is stored as binary data. If the end-of-file indicator is encountered, -1 is stored.
When the IN instruction is executed, the contents of GR registers are saved but the contents of FR are
undefined.

(2) OUT Output area, output character length area

The OUT instruction writes character data as one record of data to the previously assigned output
device.
The output area operand should be the label of the area where the data to be output is stored, one
character per word. The storage format is the same as character constants with the DC instruction. Bits
0 through 7 do not have to be zeroes because the OS ignores them.

 - 58 -

The output character length area should be the label of the one-word work area, and the character
length that is to be output (>= 0) is stored as binary data.
When the OUT instruction is executed, the contents of the GR registers are saved but the contents of
FR are undefined.

(3) RPUSH

The RPUSH instruction stores the contents of GR in the stack in order of GR1, GR2, … and GR7.

(4) RPOP

The RPOP instruction takes out of the contents of the stack sequentially, and stores in GR in order of
GR7, GR6, … and GR1.

2.5 Machine Language Instructions
Operands of machine language instructions are described in the following formats:
r, r1, r2 GR is specified using a symbol from GR0 to GR7.
x GR used as the index register can be specified by a symbol from GR1 to

GR7.
adr The address is specified by a decimal constant, a hexadecimal constant, an address

constant or a literal.
A literal can be described by attaching the equal sign (=) before a decimal
constant, a hexadecimal constant or a character constant. CASL II generates
a DC instruction by specifying the constant after the equal sign as the
operand, and sets the address to the adr value.

2.6 Other
(1) The relative positions of the instruction words and areas generated by the assembler conform to the

order of the descriptions in the assembly language program. All DC instructions generated from
literals are located just before the END instruction.

(2) The instruction words and areas that are generated occupy a continuous area in the main memory.

3. Guide to Program Execution

3.1 OS

The following arrangements exist regarding program execution.
(1) The assembler interprets undefined labels (of those labels written in the operand column, any that are

not defined within the program) as entry names (START instruction labels) for other programs. In
this case, the assembler refrains from determining the address and entrusts that task to the OS.
Before executing the program, the OS performs link processing with entry names for other programs
and determines the addresses (program linking).

(2) The program is started up by the OS. Although the area in the main memory where a program is
loaded is undefined, the address value corresponding to the label in the program is corrected to the
actual address by the OS.

(3) During program startup, the OS allocates enough stack area for the program, then adds one to the last
address and sets that value in the SP.

(4) The OS passes control to the program by the CALL instruction. When returning control to the OS
after executing the program, the RET instruction is used.

(5) The assignment of an input device to the IN instruction or of an output device to the OUT instruction
is made by the user before executing the program.

(6) The OS handles the differences that may arise in input and output procedures due to the different I/O
devices and media involved; I/O is performed using the system’s standard format and procedures
(including error handling). Therefore, the user of these IN and OUT instructions does not need to
be concerned with differences among I/O devices.

3.2 Undefined Items

Ensure that any items concerning program execution that are not defined in these specifications are
handled by the processing system.

