

- 1 -

October 2010

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 – Q6 Q7 , Q8

Question Selection Compulsory Select 1 of 2

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:
1. Use a pencil. If you need to change an answer, erase your previous answer completely

and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or
write on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection
For Q7 and Q8, mark the S of the question you select to answer in the “Selection
Column” on your answer sheet.

(4) Answers
Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the autumn Fundamental IT Engineer Examination conducted?

Answer group
a) September b) October c) November d) December

Since the correct answer is “ b) October ”, mark your answer sheet as follows:

[Sample Answer]

Sample

Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

ウA C D

- 2 -

Notations used for pseudo-language

In questions that use pseudo-language, the following notations are used unless otherwise
stated.

[Declaration, comment, and process]

Notation Description

Declares names, types, etc. of procedures,
variables, etc.

/* text */ Describes comments in text.

P
ro

ce
ss

• variable ← expression
Assigns the value of an expression to a
variable.

• procedure(argument, ...)
Calls the procedure and passes/receives
argument.

 conditional expression
 process

Indicates a one-way selection process.
If the conditional expression is true,
then the process is executed.

 conditional expression
 process 1

 process 2

Indicates a two-way selection process.
If the conditional expression is true,
then process 1 is executed.
If it is false, then process 2 is executed.

 conditional expression
 process

Indicates a pre-test iteration process.
While the conditional expression is true, the
process is executed repeatedly.

 process
 conditional expression

Indicates a post-test iteration process.
The process is executed, and then while the
conditional expression is true, the process is
executed repeatedly.

 variable: init, cond, incr
 process

Indicates an iteration process.
The initial value init (given by an expression)
is stored in the variable at the start of the
processing, and then while the conditional
expression cond is true, the process is
executed repeatedly.
An increment incr (given by an expression) is
added to the variable in each iteration.

[Logical constants]

true, false

(continued on next page)

- 3 -

[Operators and their priorities]

Type of operation Operator Priority

Unary operation +, −, not High

Multiplication, division , , %

Addition, subtraction +, −

Relational operation >, <, ≥, ≤, =, ≠

Logical product and

Logical sum or Low

Note: With division of integers, integer quotient is returned as a result.
 The % operator indicates a remainder operation.

Company names and product names appearing in the test questions are trademarks or registered
trademarks of their respective companies. Note that the ® and ™ symbols are not used within.

- 4 -

 Questions Q1 through Q6 are all compulsory. Answer every question.

Q1. Read the following description concerning the quality characteristics of software

products, and then answer Subquestion.

ISO/IEC 9126-1 defines six quality characteristics, shown in Table 1, concerning the

quality of software products.

Table 1 Six quality characteristics (ISO/IEC 9126-1)

Quality
characteristic

Brief description of characteristic
Quality sub-characteristics

(excerpts)
Functionality A set of attributes that bear on the existence

of a set of functions and their specified
properties. The functions are those that
satisfy stated or implied needs.

Suitability, Accuracy,
Security, Interoperability

Usability A set of attributes that bear on the effort
needed for use, and on the individual
assessment of such use, by a stated or
implied set of users.

Operability, Learnability,
Understandability

Reliability A set of attributes that bear on the capability
of software to maintain its level of
performance under stated conditions for a
stated period of time.

Recoverability,
Fault tolerance, Maturity

Efficiency A set of attributes that bear on the
relationship between the level of
performance of the software and the amount
of resources used, under stated conditions.

Time behavior,
Resource behavior

Maintainability A set of attributes that bear on the effort
needed to make specified modifications.

Stability, Analyzability,
Testability, Changeability

Portability A set of attributes that bear on the ability of
software to be transferred from one
environment to another.

Adaptability,
Installability,
Replaceability

Among these quality characteristics, it is important to consider reliability, efficiency,

maintainability, and portability during the coding phase.

A software development company created an internal standard for program development

with consideration for quality characteristics, and established a procedure for reviewing the

code of the developed program, in order to improve the quality of its software products.

Table 2 below is an example of comments given to a new program developer during a

recent code review.

- 5 -

Table 2 Example of comments given to a new program developer

Source code

○ Real: Ave, Count, Total

• Ave ← Total Count

Comment

Change the process as follows:

Count > 0
• Ave ← Total Count
• Ave ← Total ÷ Count
• Ave ← 0

Key quality
characteristic
(quality sub-
characteristic)

A

r: 1, r ≤ rMax, 1
c: 1, c ≤ cMax, 1

X[r, c] > Sub(r) + 1
• X[r, c] ← Sub(r) + 1

In this process, function Sub takes a long
time to complete, but its return value is
dependent on its argument only.
Optimize the process as follows:

B

Efficiency
(Time

behavior)

/* Dynamic allocation of main memory */
• GetMain(Addr, Len)

/* Dynamic releasing of main memory */
• FreeMain(Addr)

The program uses standard functions
provided by the system to allocate and
release main memory dynamically. In
general, for failures such as an accidental
update of memory area already released or
outside of the allocated range, . C

• X_GetMain(Addr, Len, …)

• X_FreeMain(Addr, …)

Maintain-
ability

(Testability)

○ Integer: P1, P2, Ans

• Ans ← Fn(P1, P2)

○ Integer function: Fn(P1, P2)

This program will be used generally in
multiple computer models.

D

○ 32 bit integer: P1, P2, Ans
○ 32 bit integer function:
 Fn(P1, P2)

E

Use the following internally-developed
functions that are equivalent in function
but also offer debugging functionality:

Since may be different for each
model, the declaration statements must be
changed as follows:

- 6 -

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in Table 2.

 Answer group for A and E

a) Portability (Adaptability) b) Efficiency (Resource behavior)

c) Reliability (Maturity) d) Maintainability (Analyzability)

e) Maintainability (Changeability)

 Answer group for B

 Answer group for C

a) failures can be detected when the data is updated, but few OS’s have a function to

log this problem

b) failures can be detected when the data is updated, but few hardware have a function

to log this problem

c) failures are often detected when the updated data is referenced later, making it

difficult to determine which code caused the problem

d) failures cannot be detected while there are allocatable main memory left

Answer group for D

a) the number of variables and functions that can be specified

b) the number of bits when they are omitted from type declarations of variables or

functions

c) the number of bits of functions that can be handled by linkers

d) the number of functions that can be handled by loaders

- 7 -

Q2. Read the following description concerning a database, and then answer Subquestions 1

and 2.

A commission book agency receives the books from publishers and sells these books to

customers.

The money received from the sales by commission is 1% of total amount of the price of the

books.

When receiving the books, receive_date, book_id, book_name, subject_id, subject_name,

receive_quantity, and price should be recorded by the staff.

When selling the books, sale_date, book_id, book_name, subject_id, subject_name,

sale_quantity, price, customer_id, customer_name, and customer_address should be

recorded by the staff.

Structure of the tables is as follows.

Here, Subject, Book, and Customer are master tables containing information about all

book’s subjects, books, and customers, respectively.

Sale_invoice, Sale_invoice_detail are tables containing sale information when customers

buy the books.

Receipt, Receipt_detail are tables containing information about the books when the staff

receives the books from publishers.

Receipt_detail

Subject

Book Receipt

Customer

Sale_invoice

Sale_invoice_detail

- 8 -

Subquestion 1

From the answer group below, select the correct answers to be inserted into the blanks

(--B--) in the following description.

The list below shows the fields and primary keys of the tables.

Subject table:

 Fields: subject_id, subject_name

 Primary key: subject_id

Book table:

 Fields: book_id, book_name, price, (---A---)

 Primary key: book_id

Customer table:

 Fields: customer_id, customer_name, customer_address

 Primary key: customer_id

Receipt table:

 Fields: receipt_id, receive_date

 Primary key: receipt_id

Receipt_detail table:

 Fields: receipt_id, no, receive_quantity, (---B---)

 Primary key: receipt_id, no

Sale_invoice table:

 Fields: invoice_id, sale_date, (---C---)

 Primary key: invoice_id

Sale_invoice_detail table:

 Fields: invoice_id, no, sale_quantity, (---B---)

 Primary key: invoice_id, no

Answer group:

a) book_id b) customer_id c) customer_name

d) invoice_id e) price f) receipt_id

g) sale_quantity h) subject_id i) subject_name

- 9 -

Subquestion 2

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in the following SQL statement.

The following SQL statement lists all subjects, corresponding number of the books, and

commission received from the sales of these books, during the specified time from the

beginning date to the end date. The list is arranged in the descending order of commission.

Here, “:BEGINDATE” and “:ENDDATE” are host variables which contain the beginning date

and the end date.

SELECT Subject.subject_id, subject_name,

 (----D----), SUM(sale_quantity * price)/100

FROM Subject, Book, Sale_invoice, Sale_invoice_detail

WHERE Subject.subject_id = Book.subject_id

 AND Sale_invoice_detail.invoice_id = Sale_invoice.invoice_id

 AND (----E----)

GROUP BY (----F----)

ORDER BY (----G----)

Answer group for D

a) AVG(sale_quantity) b) COUNT(sale_quantity)

c) MAX(sale_quantity) d) SUM(sale_quantity)

Answer group for E

a) Book.book_id = Sale_invoice.book_id AND

sale_date between :BEGINDATE and :ENDDATE

b) Book.book_id = Sale_invoice_detail.book_id AND

sale_date between :BEGINDATE and :ENDDATE

c) Book.book_id = Subject.book_id AND

sale_date between :BEGINDATE and :ENDDATE

d) sale_date between :BEGINDATE and :ENDDATE

Answer group for F and G

a) (sale_quantity * price)/100 DESC

b) Subject.subject_id

c) Subject.subject_id, subject_name

d) SUM(sale_quantity * price)/100

e) SUM(sale_quantity * price)/100 DESC

- 10 -

Q3. Read the following description concerning Hamming code, and then answer

Subquestion.

Hamming code provides a practical solution for error detection and error correction in data

transmission. Hamming code can be applied to data bits of any length, and uses the

relationship between data bits and parity bits. For example, a 7-bit ASCII code requires 4

parity bits that can be added to the end of data bits or interspersed with original data bits.

Figure 1 shows 7 data bits and 4 parity bits. Parity bits are placed in bit positions 1, 2, 4

and 8. In Hamming code, each p bit is the even parity bit for one combination of data bits,

as shown below:

p1 : covers bit positions 1, 3, 5, 7, 9, 11

p2 : covers bit positions 2, 3, 6, 7, 10, 11

p4 : covers bit positions 4, 5, 6, 7

p8 : covers bit positions 8, 9, 10, 11

11 10 9 8 7 6 5 4 3 2 1

d d d p8 d d d p4 d p2 p1

Figure 1. Positions of parity bits in Hamming code

Bit errors in transmitted data can be detected by testing all of the parity bits in the

transmitted data. Assuming that 11-bit data in Hamming code as shown in Figure 1 was

transmitted. If all 4 parity bits are correct, there is no error. But, if the parity bits p8 and p2

indicate parity errors, then bit position 8+2=10 is in error. Thus, Hamming code can

correct bit errors.

Note: The correction can be done for 1-bit errors only.

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in the following description.
Assuming that Hamming codes are configured as shown in Figure 1.

(1) The Hamming code constructed from 7-bit data 001 1101 is (--A--) .

(2) The Hamming code 110 0111 0111 was received. The code indicates that there is an

incorrect bit. The correct Hamming code is (--B--) .

- 11 -

(3) The Hamming code 011 1010 1101 was received. The code indicates that there is an

incorrect bit. The correct original 7-bit data is (--C--) .

(4) The Hamming code constructed from 7-bit data 100 1101 was received. The parity

bits p4, p2 and p1 indicate parity errors. The received Hamming code was (--D--) .

Answer group for A

a) 001 0110 0101

b) 001 0110 0111

c) 001 1110 0111

d) 001 1110 1111

Answer group for B

a) 110 0100 0111

b) 110 0110 0111

c) 110 0110 1111

d) 110 0111 0111

Answer group for C

a) 011 0101

b) 011 0111

c) 111 0101

d) 111 0111

Answer group for D

a) 011 0001 1010

b) 100 0010 1111

c) 100 1010 0101

d) 110 1110 0111

- 12 -

Q4. Read the following description concerning information security controls, and then

answer Subquestion.

Alpha publishing company employs 100+ people and publishes at least 50 new books

every year. The personnel primarily consist of editors, artists, authors, marketing staff and

clerical staff. All personnel work in the office except for authors. Authors are contracted

by editors to write books outside the office for a given time. Alpha publishes, prints and

sells their books to schools and bookstores. Alpha’s website is constantly updated to

contain information about recent and upcoming books. The collection of book titles and

sampler of its content is available at the website. The website also allows customers to

inquire by chatting or sending emails. Table 1 shows the company’s security environment.

Table 1. The company’s security environment

Work / Materials Security Requirements Security Concerns
Internal business
information

Confidentiality Leakage of confidential information.
Social engineering attack to enter more
sensitive parts of the system.

Manuscript, edited
work and cover
design

Integrity,
Confidentiality,
Accountability

Leakage of softcopies to the public before
official release (losing revenues).
Insufficient change controls for revisions
of the work.

Marketing
presentations

Availability Availability of materials for viewing
through the website and for marketing
presentations in different locations.

[Work flow]

(1) Authors write their books using their personal computers. They submit their work to

the editor through their public email, or by going to the office and giving the files

using a portable storage device.

(2) The editor and artists work on the manuscript to incorporate artwork, layout, cover

design and other elements to complete the book. The author is regularly updated of the

work by sending him/her information on the designs through email.

(3) A marketing staff is assigned to the project to work on all the marketing materials.

They design road show presentations and the corresponding web page of the book.

(4) Once the editorial work is done, the book goes to the printing press for initial printing,

then distributed to the respective customers.

The company established the security measures as follows, and summarized the evaluation

of the threats as in Table 2 and the security controls for the threats as in Table 3.

- 13 -

[Security measures]

(1) Employees make use of IDs with RFID. An RFID system is used for identifying their

entry and exit in secured areas.

(2) Employees use workstations. It’s the policy of the company that project-related files

and important business data are stored in servers, while clerical, communications and

other files are stored in their workstation. The servers are located in a separate,

secured and temperature controlled room with fire suppression system.

(3) It’s a policy that employees cannot bring in or out any files. Employees are not

allowed to bring portable storage devices. USB ports are deactivated and files are

brought in or out through a controlled terminal with manager clearance.

(4) A router with a firewall with configured stateful packet inspection is installed for the

Internet connection. The network is segmented into workgroups with NAT, and there

is no WiFi access in the office.

(5) CCTV cameras are installed at the entry points of the office and at the server room.

Recorded data is kept in DVDs for at least one year.

(6) The backup machines in the server room do daily backup of all the files in the servers.

(7) The company instituted a weekly patch management cycle for all workstations every

Friday at 4PM.

Table 2. Evaluation of threats
 Threats Damage Current control levels

and security issues
Risk Level
/ Frequency

I.1 System failure Interruption of work Servers do not have
any stand-by

Medium /
Low

I.2 Espionage,
Sabotage, Theft of
works or manuscript

Loss of revenues from
compromised work

Employee trust is
preferred over delays

Medium /
Low

I.3 Spread of virus Interruption of work,
Revert to back-up

Virus often brought in
by authors through
portable storage
devices or files sent

High /
Medium

E.1 Fire, Natural
calamities

Loss of property,
Loss of files

Office is not proofed
against earthquake

High /
Low

E.2 Internet attackers,
crackers and worms

Interruption of work,
Leakage of files

Monitored and
protected

Medium /
Medium

E.3 Burglar - Theft of
equipment

Interruption of work,
Leakage of files

Monitored and
protected

High /
Low

E.4 Theft of works or
manuscript

Loss of revenues from
compromised work

Servers in the DMZ are
not well protected

High /
Medium

 (Note) I.1 - I.3: Internal threats; E.1 - E.4: External threats.

- 14 -

Table 3. Security controls for threats

 Threats Detection Prevention Response

I.1 System failure 24-hour system
monitoring

As item (-A-) in
[Security measures]

Diagnosis and
repair

I.2 Espionage,
Sabotage, Theft of
works or manuscript

CCTV and RFID CCTV and RFID
Also as item (5) in
[Security measures]

Identify source
and terminate
employment

I.3 Spread of virus Detecting
automatically

As item (-B-) in
[Security measures]

Report to security
manager

E.1 Fire, Natural
calamities

(Not planned) (Not planned) Report to local
government

E.2 Internet attackers,
crackers and worms

Monitoring of
suspicious in-bound
network traffic

As item (-C-) in
[Security measures]

Report to security
manager

E.3 Burglar - Theft of
equipment

CCTV and RFID CCTV and RFID Report to local
authorities

E.4 Theft of works or
manuscript

When theft or loss
is reported

Protecting servers in
the DMZ

Identify and
charge offenders

Subquestion

From the answer group below, select the appropriate answers to be inserted into the blanks

(--B--) in Table 3 and the blanks (--B--) in the following description.

The items (1) through (7) in [Security measures] can be classified under 3 categories;

physical access controls, logical access controls, and media controls.

The items (1), (-D-) and (-E-) are related to physical access controls. Among these 3

items, the item (-E-) mainly aims at detection, and others mainly aim at prevention.

The item related to media controls is (-F-) .

Answer group

a) (1) b) (2) c) (3) d) (4)

e) (5) f) (6) g) (7)

- 15 -

Q5. Read the following description concerning program design, and then answer

Subquestions 1 and 2.

A company develops a payroll system for its employees’ monthly payment. Payment

records of the last month are kept in Old PayData file. Whenever promotion is awarded to

employees or appointment is made for new employees, new records are created in a file

called Promotion file. Every month, Old PayData file is updated with Promotion file, and

New PayData file is generated. Then, payroll calculation is done using New PayData file.

The record format of Old PayData file and Promotion file, with sample data, are as

following. Old PayData record and New PayData record have the same format.

Old PayData (with sample data)
EmpID BasicPay Increment Bonus LoanDeduction TravelAllowance
0002 30000 3000 5000 0 10000
0004 30000 3000 5000 2000 10000
0006 50000 5000 8000 0 10000
0008 40000 4000 5000 1000 10000

Promotion (with sample data)
EmpID BasicPay Increment Bonus
0004 40000 4000 5000
0005 30000 3000 5000
0006 60000 6000 8000

New PayData (with resulted data derived from the above sample data)
EmpID BasicPay Increment Bonus LoanDeduction TravelAllowance
0002 30000 3000 5000 0 10000
0004 40000 4000 5000 2000 10000
0005 30000 3000 5000 0 10000
0006 60000 6000 8000 0 10000
0008 40000 4000 5000 1000 10000

The conditions and the procedures to generate New PayData file by matching and updating

of Old PayData file with Promotion file is as follows.

Conditions:

1. There is no duplicated EmpIDs in Old PayData file and Promotion file. Range of

EmpID is from 0001 to 9999.

2. Old PayData file and Promotion file are sorted in ascending order of the EmpID.

- 16 -

Pre Process:

1. Open all files. (executed implicitly)

2. Read a record from Old PayData file, and read a record from Promotion file.

Iteration Process:

1. Compare the EmpIDs of Old PayData record with Promotion record.

2. If they are equal, update the Old PayData record with Promotion record by simply

replacing BasicPay, Increment and Bonus from Promotion record. LoanDeduction

and TravelAllowance in the Old PayData record remain unchanged. Then, write

updated record to New PayData file.

3. If EmpID exists only in Old PayData record, current Old PayData record is copied

to New PayData file.

4. If EmpID exists only in Promotion record, write the data in Promotion record to

New PayData file where LoanDeduction is set to 0 and TravelAllowance is set to

10000.

5. Exit the loop when both Old PayData file and Promotion file reach end of file.

Post Process:

1. Close all files. (executed implicitly)

In the above program design, reading a record from Old PayData file is designed as a

separate procedure called Read_Old_PayData, and reading a record from Promotion file is

designed as a separate procedure called Read_Promotion.

In each of these procedures, if a file reaches end of file, then end-of-file flag EOF is set to

‘Yes’ (initial value is ‘No’) and EmpID is set to 999999 (high-value).

Subquestion 1

The following flowchart shows the procedure to generate New PayData file by matching

and updating of Old PayData file with Promotion file.

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in the following flowchart.

- 17 -

(-B-)

(-C-)

=

Start Main Process

Loop

repeat while (----A----)

Read_Old_PayData

Read_Promotion

Old_PayData.EmpID :

 Promotion.EmpID

Update Old_PayData

with Promotion data

write New_PayData

Read_Old_PayData

Build New_PayData

from Promotion data

write New_PayData

(--D--)

write New_PayData

with Old_PayData

End Main Process

Loop

Read_Promotion (--E--)

(1)

(2)

(3)

(4)

(5)

(6)

Note: Marks (1) through (6) at the upper right of process boxes

 are reference numbers used in Subquestion 2.

- 18 -

Answer group for A

a) Old_PayData.EOF = ‘No’ AND Promotion.EOF = ‘No’

b) Old_PayData.EOF = ‘No’ OR Promotion.EOF = ‘No’

c) Old_PayData.EOF = ‘Yes’ AND Promotion.EOF = ‘Yes’

d) Old_PayData.EOF = ‘Yes’ OR Promotion.EOF = ‘Yes’

Answer group for B through E

a) > b) <

c) Read_Old_PayData d) Read_Promotion

Subquestion 2

From the answer group below, select the correct answer to be inserted into the blank

(--B--) in the following description.

It is decided to change part of the condition and the iteration process as follows. Changed

parts are indicated by underlines.

Condition:

1. There is no duplicated EmpIDs in Old PayData file, but duplicated EmpIDs may

possibly exist in Promotion file. Range of EmpID is from 0001 to 9999.

Iteration Process:

2. If they are equal, update the Old PayData record with the non-blank data in the

Promotion record. All other data in the Old PayData record remain unchanged.

Then, write updated record to New PayData file.

For example, given the following sample data.

Old PayData (with sample data)
EmpID BasicPay Increment Bonus LoanDeduction TravelAllowance
0004 30000 3000 5000 2000 10000
0006 50000 5000 8000 0 10000

Promotion (with sample data)
EmpID BasicPay Increment Bonus
0004 4000
0004 40000

The first Promotion record updates the Increment of EmpID 0004 in Old PayData file to

4000, then the second Promotion record updates the BasicPay of EmpID 0004 in Old

PayData file to 40000. So the resulted New PayData file is as follows.

- 19 -

New PayData (with resulted data derived from the above sample data)
EmpID BasicPay Increment Bonus LoanDeduction TravelAllowance
0004 40000 4000 5000 2000 10000
0006 60000 6000 8000 0 10000

To reflect the changes described above, the flowchart must be changed as follows.

1. Change the detailed process of the process box (1).

2. Remove (--F--) .

Answer group for F

a) process box (2) b) process boxes (2) and (3)

c) process boxes (3) and (6) d) process boxes (4) and (5)

e) process boxes (4) and (6) f) process box (5)

- 20 -

Q6. Read the following description of programs and the programs themselves, and then

answer Subquestions 1 and 2.

Heap is a complete binary tree which satisfies that the value of every internal node is

greater (or less) than or equal to the values of its children. This is called the heap property.

Figure 1a shows an example of a heap with 10 nodes.

In this program, a heap is implemented in an array T that is

indexed from 1 to N, where N is the number of elements in the

heap. The root of the heap is located at T[1], and for each

index i, element T[i] has children T[2i] and T[2i+1], and the

parent T[i/2] (if either or both children are present). Figure 1b

shows the array representation for the heap shown in Figure 1a.

The crucial characteristic of this data structure is that the heap property can be restored

efficiently if the value of a node is modified.

If the value of a node increases to the extent that it becomes

greater than the value of its parent, it suffices to exchange

these two values, and then continues the same process

upwards in the tree if necessary until the heap property is

restored. This operation is called shifting up. For example, if

the value 1 in Figure 1a is modified so that it becomes 10, the

heap property can be restored by exchanging 10 with its parent 4, and exchanging it again

with its new parent 8, obtaining the result shown in Figure 2.

To the contrary, if the value of a node is decreased so that it

becomes less than the value of at least one of its children, it

suffices to exchange the modified value with the larger of the

values of its children, and then continues this process

downwards in the tree if necessary until the heap property is

restored. This operation is called shifting down. For example, if the value 12 in the root of

Figure 2 is modified so that it becomes 3, the heap property can be restored by exchanging

3 with its larger child 11, and exchanging it again with its new larger child 5, obtaining the

result shown in Figure 3.

1 2 3 4 5 6 7 8 9 10

12 8 11 4 8 5 2 2 1 6

6

12

8 11

4 8 5 2

2 1

Fig 1a. Max heap

6

12

10 11

8 8 5 2

2 4

Fig 2. Shifting up

6

11

10 5

8 8 3 2

2 4

Fig 3. Shifting down

Index

Value

Fig 1b. Array representation

- 21 -

There are 3 subprograms: alter_heap, shift_down and shift_up. The subprogram

alter_heap sets the value v in T[i]. The subprograms shift_up and shift_down

perform shifting down and shifting up operations respectively. The following table shows

the parameters used in these subprograms.

Parameter Input/Output Explanation
T[] Input Integer type array to store elements of heap
n Input Number of elements in heap
i Input The index of array T indicating the target element or

the starting node
v Input Integer type value that is set to T[i]

[Program 1]

O Subprogram: alter_heap(T[], n, i, v)

/* T[] is a heap. The value v is set to T[i], and the heap property is re-established. */

/* Assuming that 1 ≤ i ≤ n. */

O Integer type: x

• x ← T[i]

• T[i] ← v

 v < x

 • (--A--)

 • (--B--)

O Subprogram: shift_up(T[], i)

/* Shifts the node i up so as re-establish the heap property in T[]. */

/* Assuming that 1 ≤ i ≤ n. */

O Integer type: j, k, w

• k ← i

/* If j = k, then the node has arrived at its final position. */

 /* post-test iteration process */

 • j ← k

 j > 1 and T[(--C--)] < T[j]
 • k ← (--C--)
 • w ← T[j]

 • T[j] ← T[k]

 • T[k] ← w

 j ≠ k

- 22 -

O Subprogram: shift_down(T[], n, i)

/* Shifts the node i down so as re-establish the heap property in T[]. */

/* Assuming that 1 ≤ i ≤ n. */

O Integer type: j, k, w

• k ← i

/* If j = k, then the node has arrived at its final position. */

 /* post-test iteration process */

 • j ← k

 2j ≤ n and T[2j] > T[j]
 • k ← 2j

 2j < n and T[2j+1] > T[(--D--)]
 • k ← 2j+1

 j ≠ k

 • w ← T[j]

 • T[j] ← T[k]

 • T[k] ← w

 j ≠ k

Subquestion 1

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in Program 1.

 Answer group for A and B

a) shift_down(T[], n, 1) b) shift_down(T[], n, i)

c) shift_down(T[], n, x) d) shift_up(T[], 1)

e) shift_up(T[], i) f) shift_up(T[], x)

 Answer group for C and D

a) j 2 b) 2 j

c) 2 j + 1 d) k

e) 2 k f) n

- 23 -

It remains to be seen how to create a heap starting from the elements of array T[] in an

undefined order. Suppose, for example, that array T[] contains the initial values shown in

Figure 4a.

First, make each of the sub-trees, whose roots are at level 1, into a heap. This is done by

shifting down these roots, as illustrated in Figure 4c.

The sub-trees at level 2 are then transformed into heaps, again by shifting down their roots.

Figure 4d shows the process for the left sub-tree.

The right sub-tree at level 2 is already a heap. The contents of array T[] at this point are

as follows.

It only remains to shift down its root to obtain the desired heap. The final process goes as

follows.

Fig 5. Array representation

1 2 3 4 5 6 7 8 9 10

1 6 9 2 7 5 2 7 4 10

1 2 3 4 5 6 7 8 9 10

1 10 9 7 7 5 2 2 4 6

1 2 3 4 5 6 7 8 9 10

10 1 9 7 7 5 2 2 4 6

1 2 3 4 5 6 7 8 9 10

E

1 2 3 4 5 6 7 8 9 10

10 7 9 4 7 5 2 2 1 6

Level 0

Level 1

Level 2

Level 3

10

1

6 9

2 7 5 2

7 4

Fig 4b. Initial values

Fig 4d. Level 2 left sub-tree is made into a heap

6

7 10

2 4 7

10

7 6

2 4 7

10

7 7

2 4 6

Fig 4c. Level 1 sub-trees are made into heaps

57

2 4

10

7

2

Index

Value

Fig 4a. Initial values in array T[]

Fig 4e. Array representation after the operation in Fig 4d

- 24 -

The subprogram make_heap that realizes this process is shown in Program 2.

[Program 2]

O Subprogram: make_heap(T[], n)

/* Makes array T[] into a heap. */

O Integer type: i

• i ← n2
 i > 0

 • (--F--)

 • i ← i-1

Subquestion 2

From the answer groups below, select the correct answers to be inserted into the blank

(--B--) in Figure 5 and the blank (--B--) in Program 2.

 Answer group for E

a)

b)

c)

d)

Answer group for F

a) alter_heap(T[], n, i, T[1]) b) shift_down(T[], n, 1)

c) shift_down(T[], n, i) d) shift_up(T[], i)

e) shift_up(T[], n)

1 10 9 7 5 2 7 2 4 6

10 7 9 1 7 5 2 2 4 6

10 7 9 7 2 5 7 2 4 6

1 10 9 7 7 2 4 2 6 5

- 25 -

 Concerning questions Q7 and Q8, select one of the two questions.

 Then, mark s in the selection area on the answer sheet, and answer the question.

 If two questions are selected, only the first question will be graded.

Q7. Read the following description of a C program and the program itself, and then answer

Subquestion.

This is a C program to keep track of student registration in a class.

[Program Description]

(1) The program aims to keep the data of the students who enroll the course. For each

student, the program stores student ID, first name, and last name as a student record.

(2) The program stores all the data in a binary file named “register.dat”. The records are

placed in the file in ascending order of absolute value of student ID. The file may

contain records having negative student IDs.

(3) The program first calls select_menu function to show the menu for a user. The user

chooses one of the choices to manipulate the data in the file. The choices are “Add a

new student”, “Delete the existing student”, “List all the students”, "Find the student",

and “Exit from the program”.

(4) When the user chooses to add a new student, the program calls add_student function.

The function needs to find the appropriate position to insert a new record, and

rearrange the existing records in the file so that there is empty space to insert the new

record. The algorithm for adding a new student is as follows.

1) Accept the input student ID.

2) Move the file pointer to the beginning of the file.

3) Read records in the file sequentially to find the position to insert a new record. If

the input student ID already exists in the file, stop the operation.

4) Accept the student's first name and last name.

5) Set the insertion position.

6) Move the file pointer to the last record of the file.

7) Read a record and write it to the next position. Then move the file pointer

backward to the next record to be moved. Repeat this step until the file pointer

reaches the insertion position

8) Write the new record to the insertion position.

(5) When the user chooses to delete the existing student, the program calls

delete_student function. It does not delete the record physically, but changes the

sign of the student ID. Negative value indicates that the record is deleted logically.

(6) When the user chooses to list all the students, the program calls list_student

- 26 -

function. It prints out all the records that have positive student IDs.

(7) When the user chooses to find the student, the program calls find_student function.

It conducts a binary search among the records in the file in order to find the record of

input ID.

(8) In order to make it easier to set the file pointer to a specified position, 4 utility

functions based on fseek are prepared.

1) move_from_begin – move the file pointer forward for the specified number of

records from the beginning of the file.

2) move_from_end – move the file pointer backward for the specified number of

records from the end of the file.

3) move_forward – move the file pointer forward for the specified number of records

from the current position.

4) move_backward – move the file pointer backward for the specified number of

records from the current position.

[Program]

#include<stdio.h>

#include <stdlib.h>

struct student_record {

 int id;

 char firstname[20];

 char lastname[20];

};

int select_menu();

void move_from_begin(FILE *ptr, int r);

void move_from_end(FILE *ptr, int r);

void move_forward(FILE *ptr, int r);

void move_backward(FILE *ptr, int r);

void add_student(FILE *ptr);

void delete_student(FILE *ptr);

void list_student(FILE *ptr);

void find_student(FILE *ptr);

- 27 -

int main() {

 FILE *ptr;

 int choice;

 if ((ptr = fopen("register.dat","r+b")) == NULL) {

 if ((ptr = fopen("register.dat","w+b")) == NULL) {

 fprintf(stderr, "Fail to open file\n");

 return 1;

 }

 }

 while((choice=select_menu()) != 5) {

 switch(choice) {

 case 1: add_student(ptr); break;

 case 2: delete_student(ptr); break;

 case 3: list_student(ptr); break;

 case 4: find_student(ptr); break;

 }

 }

 fclose(ptr);

 return 0;

}

int select_menu() {

 int choice;

 printf("Select one option:\n");

 printf("1. Add New Student\n");

 printf("2. Delete Existing Student\n");

 printf("3. List Students\n");

 printf("4. Find Student\n");

 printf("5. Exit\n");

 printf("Enter your option: ");

 scanf("%d", &choice);

 return choice;

}

void move_from_begin(FILE *ptr, int r) {

 fseek(ptr, r*sizeof(struct student_record), SEEK_SET); }

void move_from_end(FILE *ptr, int r) {

 fseek(ptr, -1*r*sizeof(struct student_record), SEEK_END); }

void move_forward(FILE *ptr, int r) {

 fseek(ptr, r*sizeof(struct student_record), SEEK_CUR); }

void move_backward(FILE *ptr, int r) {

 fseek(ptr, -1*r*sizeof(struct student_record), SEEK_CUR); }

- 28 -

void add_student(FILE *ptr) {

 struct student_record student, temp_record;

 int n, query_id;

 long int insertion_position, p;

 int position_in_between=0;

 printf("Enter a Student ID:");

 scanf("%d", &query_id);

 if (query_id <= 0) {

 fprintf(stderr, "Student ID must be positive number.\n");

 return;

 }

 (----A----) ;
 while(!feof(ptr) && !position_in_between) {

 n = fread(&student, sizeof(struct student_record), 1, ptr);

 if (n > 0) {

 if ((----B----)) {

 fprintf(stderr, "ID %d already exists.\n", query_id);

 return;

 }

 else if (-student.id == query_id) {

 move_backward(ptr, 1);

 position_in_between = -1;

 }

 else if (abs(student.id) > query_id) {

 position_in_between = 1;

 }

 }

 }

 printf("Enter firstname and lastname:");

 scanf("%s%s", student.firstname, student.lastname);

 student.id = query_id;

 if (position_in_between==1) {

 insertion_position =

 ftell(ptr) - sizeof(struct student_record);

 (----C----) ;
 do {

 move_backward(ptr, 1);

 fread(&temp_record, sizeof(struct student_record), 1, ptr);

 fseek(ptr, ftell(ptr), SEEK_SET);

 fwrite(&temp_record, sizeof(struct student_record), 1, ptr);

 (----D----) ;
 } while(ftell(ptr) > insertion_position);

 }

 fwrite(&student, sizeof(struct student_record), 1, ptr);

}

- 29 -

void delete_student(FILE *ptr) {

 struct student_record student;

 int n, query_id;

 printf("Enter a Student ID:");

 scanf("%d", &query_id);

 if (query_id <= 0) {

 fprintf(stderr, "Student ID must be positive number.\n");

 return;

 }

 (----A----) ;
 while(!feof(ptr)) {

 n = fread(&student, sizeof(struct student_record), 1, ptr);

 if (n > 0) {

 if (student.id == query_id) {

 student.id = -1*student.id;

 move_backward(ptr, 1);

 fwrite(&student, sizeof(struct student_record), 1, ptr);

 return;

 }

 }

 }

}

void list_student(FILE *ptr) {

 struct student_record student;

 (----A----) ;
 while(!feof(ptr)) {

 if (fread(&student,sizeof(struct student_record), 1, ptr)) {

 if (student.id > 0)

 printf("%2d %-10s%-10s\n", student.id,

 student.firstname, student.lastname);

 }

 }

}

- 30 -

void find_student(FILE *ptr) {

 struct student_record student;

 int query_id, left, right, mid;

 printf("Enter a Student ID:");

 scanf("%d", &query_id);

 if (query_id <= 0) {

 fprintf(stderr, "Student ID must be positive number.\n");

 return;

 }

 left = 0;

 (----C----) ;

 right = ftell(ptr) / sizeof(struct student_record);

 while (left <= right) {

 mid = (left+right)/2;

 move_from_begin(ptr, mid);

 fread(&student, sizeof(struct student_record), 1, ptr);

 if ((----B----)) {

 printf("Found the student with ID %d\n", query_id);

 printf("First name: %s\n", student.firstname);

 printf("Last name: %s\n", student.lastname);

 return;

 }

 else if ((----E----)) {

 left = mid + 1;

 }

 else {

 right = mid - 1;

 }

 }

 fprintf(stderr, "The student with ID %d not found\n", query_id);

 return;

}

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in the Program.

Answer group for A, C and D

a) move_backward(ptr, 1) b) move_backward(ptr, 2)

c) move_forward(ptr, 1) d) move_forward(ptr, 2)

e) move_from_begin(ptr, 0) f) move_from_begin(ptr, 1)

g) move_from_end(ptr, 0) h) move_from_end(ptr, 1)

- 31 -

Answer group for B

a) student.id < 0 b) student.id < query_id

c) student.id == 0 d) student.id == query_id

e) student.id > 0 f) student.id > query_id

Answer group for E

a) abs(student.id) < query_id b) abs(student.id) <= query_id

c) abs(student.id) > query_id d) abs(student.id) >= query_id

- 32 -

Q8. Read the following description of a Java program and the program itself, and then

answer Subquestion.

[Program Description]

The class AddressBook is created to maintain a collection of Person objects.

AddressBook is incorporated with routines for searching, sorting and adding persons.

AddressBook is able to sort the Person objects in alphabetical order of their names or in

ascending order of their ages. AddressBook uses HaspMap for data management.

[Program]

import java.util.*;

class Person {

 public static final int NAME = 0;

 public static final int AGE = 1;

 private static final int LESS = -1;

 private static final int EQUAL = 0;

 private static final int MORE = 1;

 private static int compareAttribute;

 private String name;

 private int age;

 private char gender;

 static {

 compareAttribute = NAME;

 }

 public Person(String name, int age, char gender) {

 this.age = age;

 this.name = name;

 this.gender = gender;

 }

 public static void setCompareAttribute(int attribute) {

 compareAttribute = attribute;

 }

 public int compareTo(Person person, int attribute) {

 int comparisonResult;

- 33 -

 if (attribute == AGE) {

 int p2age = person.getAge();

 if (this.age < p2age) {

 comparisonResult = LESS;

 } else if (this.age == p2age) {

 comparisonResult = EQUAL;

 } else {

 assert this.age > p2age;

 comparisonResult = MORE;

 }

 } else {

 String p2name = person.getName();

 comparisonResult = this.name.compareTo(p2name);

 }

 return comparisonResult;

 }

 public int compareTo(Person person) {

 return compareTo(person, compareAttribute);

 }

 public int getAge() {

 return age;

 }

 public char getGender() {

 return gender;

 }

 public String getName() {

 return name;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public void setGender(char gender) {

 this.gender = gender;

 }

 public void setName(String name) {

 this.name = name;

 }

- 34 -

 public String toString() {

 return this.name + "\t\t" +

 this.age + "\t\t" +

 this.gender;

 }

}

interface AddressBook {

 public void add(Person newPerson);

 public Person search(String searchName);

 public Person[] sort(int attribute);
}

class AddressBookV1 implements AddressBook {

 private static final int DEFAULT_SIZE = 25;

 private Map entry;

 public AddressBookV1() {

 this(DEFAULT_SIZE);

 }

 public AddressBookV1(int size) {

 entry = new HashMap(size);

 }

 public void add(Person newPerson) {

 entry.put(newPerson.getName(), (----A----));

 }

 public Person search(String searchName) {

 return (Person) (----B----) (searchName);
 }

 public Person[] sort(int attribute) {
 if (!(attribute == Person.NAME || attribute == Person.AGE)) {

 throw new IllegalArgumentException();

 }

 Person[] sortedList = new Person[entry.size()];

 entry.values().toArray((----C----));

 Arrays.sort(sortedList, (----D----));

 return sortedList;

 }

- 35 -

 private Comparator getComparator(int attribute) {

 Comparator comp = null;

 if (attribute == 1) {

 comp = new (----E----) ;
 } else {

 assert attribute == 0:

 "Attribute not recognized for sorting";

 comp = new (----F----) ;
 }

 return comp;

 }

 class AgeComparator implements Comparator {

 private final int LESS = -1;

 private final int EQUAL = 0;

 private final int MORE = 1;

 int comparisonResult;

 public int compare(Object p1, Object p2) {

 int p1age = ((Person)p1).getAge();

 int p2age = ((Person)p2).getAge();

 if (p1age < p2age) {

 comparisonResult = LESS;

 } else if (p1age == p2age) {

 comparisonResult = EQUAL;

 } else {

 assert p1age > p2age;

 comparisonResult = MORE;

 }

 return comparisonResult;

 }

 }

 class NameComparator implements Comparator {

 public int compare(Object p1, Object p2) {

 String p1name = ((Person)p1).getName();

 String p2name = ((Person)p2).getName();

 return (----G----) ;
 }

 }

}

- 36 -

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

(--B--) in the Program.

Answer group for A

a) entry

b) newPerson

c) newPerson.getAge

d) newPerson.getName

e) newPerson.setCompareAttribute(DEFAULT_SIZE)

f) null

Answer group for B

a) entry.get

b) entry.put

c) entry.remove

d) entry.values

e) Person.setName

Answer group for C and D

a) AgeComparator.compare()

b) DEFAULT_SIZE

c) getComparator(attribute)

d) Person

e) Person.AGE

f) Person.NAME

g) sortedList

Answer group for E through G

a) AgeComparator()

b) Comparator()

c) compare(p1name, p2name)

d) getComparator(Person.NAME)

e) NameComparator()

f) p1name.compareTo(p1name, comparisonResult)

g) p1name.compareTo(p2name)

