

- 1 -

October 2023

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 Q2 – Q5 Q6 Q7, Q8
Question Selection Compulsory Select 2 of 4 Compulsory Select 1 of 2
Examination Time 13:30 – 16:00 (150 minutes)

Instructions:

1. Use a pencil. If you need to change an answer, erase your previous answer completely
and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or write
on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection
For questions Q2 through Q5, and Q7 and Q8, mark the of the questions you
select to answer in the “Selection Column” on your answer sheet.

(4) Answers
Mark your answers as shown in the sample question below.

[Sample Question]
Which of the following should be used for marking your answer on the answer sheet?

Answer group

a) Ballpoint pen b) Crayon c) Fountain pen d) Pencil

Since the correct answer is “ d) Pencil ”, mark the answer as below:

[Sample Answer]

Sample ●

Do not open the exam booklet until instructed to do so.
Inquiries about the exam questions will not be answered.

- 2 -

Notations used in the pseudo-language

In questions that use pseudo-language, the following notations are used unless otherwise
stated:

[Declaration, comment, and process]

Notation Description
type: var1, ... , array1[], ... Declares variables var1, ... , and/or arrays

array1[], ... , by data type such as INT and CHAR.
FUNCTION: function(type: arg1, ...) Declares a function and its arguments arg1,
/* comment */ or // comment Describes a comment.

Pr
oc

es
s

variable ← expression; Assigns the value of the expression to the variable.
function (arg1, ...); Calls the function by passing / receiving the

arguments arg1,
IF (condition) {
 process1
}

ELSE {
 process2
}

Indicates the selection process.
If the condition is true, then process1 is executed.
If the condition is false, then process2 is
executed, when the optional ELSE clause is present.

WHILE (condition) {
 process
}

Indicates the “WHILE” iteration process.
While the condition is true, the process is
executed repeatedly.

DO {
 process
} WHILE (condition);

Indicates the “DO - WHILE” iteration process.
The process is executed once, and then while the
condition is true, the process is executed
repeatedly.

FOR (init; condition; incr) {
 process
}

Indicates the “FOR” iteration process.
While the condition is true, the process is
executed repeatedly.
At the start of the first iteration, the process init is
executed before testing the condition.
At the end of each iteration, the process incr is
executed before testing the condition.

[Logical constants]

true, false

[Operators and their precedence]

Type of operation Unary Arithmetic Relational Logical
Operators +, −, not ×, ÷, % +, − >, <, ≥, ≤, =, ≠ and or

Precedence High Low
Note: With division of integers, an integer quotient is returned as a result.
 The “%” operator indicates a remainder operation.

- 3 -

 Question Q1 is compulsory.

Q1. Read the following description of an exchange of cryptographic keys, and then answer

Subquestions 1 and 2.

As a method of exchanging cryptographic keys in an insecure network, the Diffie-Hellman
algorithm allows two users to securely exchange a key that can be used for subsequent
symmetric encryption of messages.

This algorithm uses modulo operations. The modulo operation “a mod b” calculates the
remainder when integer a is divided by integer b. For example, 29 mod 5 is 4, and 21 mod
3 is 0.

To establish a shared secret key, the two users must first select two numbers: a prime number
p and an integer g such that the value of g

n mod p does not overlap in the range 1 ≤ n ≤ p -

1. In other words, each value of n (n = 1, 2, … , p - 1) appears in g n mod p. Table 1 shows an
example of such an integer pair: p = 11 and g = 2. The bottom row shows the numbers 1, 2,
… , 10.

Table 1 An example of g n mod p with an integer pair: p = 11 and g = 2

n 1 2 3 4 5 6 7 8 9 10
2n 2 4 8 16 32 64 128 256 512 1024

2n mod 11 2 4 8 5 10 9 7 3 6 1

The Diffie-Hellman algorithm is shown in Figure 1 and in the following steps:
(1) Alice and Bob select a prime number p and an integer g, as explained above.
(2) Alice selects a random number, x (1 ≤ x ≤ p - 1), and calculates R1 = g

x mod p.
(3) Bob selects another random number, y (1 ≤ y ≤ p - 1), and calculates R2 = g

y mod p.
(4) Alice sends R1 to Bob. Note that Alice does not send the value of x.
(5) Bob sends R2 to Alice. Note that Bob does not send the value of y.
(6) Alice calculates the shared secret key K = (R2)

x mod p.
(7) Bob calculates the shared secret key K = (R1)

y mod p.

Thus, Alice and Bob obtain the shared secret key K for the session.

- 4 -

Figure 1 Diffie-Hellman key exchange algorithm

Subquestion 1
From the answer group below, select the correct answer to be inserted in each blank
_______ in the following description.

A shared secret key is being exchanged between Alice and Bob using the Diffie-Hellman
algorithm. Assume that they agreed upon the prime number p = 11 and the integer g = 2.
If Bob has received the public key R1 = 3 from Alice, the random number x Alice has selected
is ___A___ . Also, if Alice has received the public key R2 = 9 from Bob, the random
number y Bob has selected is ___B___ .
In this case, i.e., R1 = 3 and R2 = 9, the shared secret key obtained by both Alice and Bob is
___C___ , which they can use for subsequent symmetric encryption of messages.

Answer group

a) 1 b) 2 c) 3 d) 4 e) 5
f) 6 g) 7 h) 8 i) 9 j) 10

Alice Bob

 (1) select p and g

(2) select x,
 calculate R1 = g

x mod p (3) select y,
 calculate R2 = g

y mod p

(4) send R1 to Bob (5) send R2 to Alice

(6) calculate K = (R2)

x mod p (7) calculate K = (R1)
y mod p

- 5 -

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the following description.

Alice and Bob decided to change the values of g, x, and y. Then, they exchanged the re-
calculated R1 and R2, and finally obtained the shared secret key K.
Assume that an attacker Eve knows the three non-secret values: p = 11, g = 7, and R1 = 3.
Recently, Eve obtained the value y = 3 by illegal means. Then, it would be possible for Eve
to determine the shared secret key K as ___D___ .

In this case, p is sufficiently small in that it is possible to find x from R1 or y from R2 in a
short time. However, since an efficient way to perform this calculation has not been
discovered, finding x from R1 requires a brute-force search for x such that g

x mod p = R1.
Assuming that 2

90 attempts to search for x can be made in one year, it would take
approximately ___E___ years to search for x if p of about 2

120 in size is used.
For practical use, a prime number with a size of 2

2048 (≈ 3.2 × 10
616) or larger is used as p.

Answer group for D

a) 1 b) 2 c) 3 d) 4 e) 5
f) 6 g) 7 h) 8 i) 9 j) 10

Answer group for E

a) 2 b) 5 c) 10 d) 100
e) 1000 f) 1 million g) 1 billion

- 6 -

 Concerning questions Q2 through Q5, select two of the four questions. For each selected
 question, mark the in the selection area on the answer sheet, and answer the question.
 If three or more questions are selected, only the first two questions will be graded.

Q2. Read the following description of direct-mapped cache memory configuration, and then

answer Subquestion.
In this question, letters in italics, such as 001 and ttt indicate binary digits, and letters
in Gothic, such as 0F and xx indicate hexadecimal digits.

Cache memory is placed between the CPU and the main memory. Cache memory is designed
to provide fast access to selected data from the main memory. Since the size of cache
memory is much smaller than the size of main memory, the large amount of data required
for a process cannot be stored in cache memory simultaneously.

[Direct-mapped cache]
A mapping is required when copying data from main memory to cache memory. A block of
main memory maps to only one predetermined location in cache memory in a direct-mapped
cache method, which is one of the common types of mapping functions.

Consider a simple memory model:

Main memory: 256 bytes in size, addressed 0 to 255. Each address holds 1-byte data.
Cache memory: 32 bytes (= 8 words) in size for data.
Data transfer between main memory and cache memory: In the unit of words.

In this model, a word is defined as 4 contiguous bytes in main memory starting at an address
that is a multiple of 4.

Figure 1 shows the relationship between main memory and cache memory.
An 8-bit main memory address is divided into three parts: tag-bits (3 bits), line-bits (3 bits),
and byte-bits (2 bits). Tag-bits ttt is used to identify the main memory address in the cache.
Line-bits lll is used for mapping; a word in main memory whose address is aaa lll00 (a:
any) is always mapped to the word at line position lll in the cache. Byte-bits bb indicate
byte offset in a word.

 Main memory Cache memory
 address data line tag word
ttt lll00 xx xx xx xx lll ttt xx xx xx xx.

Figure 1 Relationship between main memory and cache memory

- 7 -

When the CPU is going to read a byte at address ttt lll bb that is not loaded into the cache
memory, the processor transfers the word that contains the target byte from the main memory
to the line location lll in the cache memory with the tag-bits ttt.

Figure 2 shows the simple memory model explained above with sample data.
For example, when the CPU is going to read the byte 1B at address 18, ___A___ in the
cache memory.
The processor can identify the main memory address of a word in the cache memory using
the line location lll and tag-bits ttt. For example, the word FF FF FF F6 on line 101 can
be identified in that it is loaded from the main memory addresses ___B___ .

Whenever the CPU needs data from the main memory, it immediately checks whether the
data is loaded into the cache memory. If the data exists in the cache memory, the state is
called “cache hit”; otherwise, it is called “cache miss”.
Assume that the main memory and cache memory hold the data as shown in Figure 2. When
the CPU reads the data successively from addresses 0, 32, 2, and 34, in this order, the
sequence of occurrence of the state will be cache hit → cache miss → ___C___ .

Main memory Cache Memory
address data line tag word

000 000 00 1B 00 41 10 000 000 1B 00 41 10

000 001 00 00 0A 1A 01 001 000 00 0A 1A 01

000 010 00 46 10 00 06 010 100 88 89 8A 8B

000 011 00 50 00 00 FC 011 100 8C 8D 8E 8F

000 100 00 0A 00 1B 00 100 001 00 00 00 0A

000 101 00 41 10 00 64 101 001 FF FF FF F6

⁝ ⁝ 110 111 00 00 13 BA

100 010 00 88 89 8A 8B 111 111 00 00 00 37

100 011 00 8C 8D 8E 8F
⁝ ⁝

111 110 00 00 00 13 BA [Legend]
111 111 00 00 00 00 37 Loaded

⁝ ⁝
Figure 2 Simple memory model with sample data

Generally, when the main memory address is divided into three parts as follows:

tag-bits line-bits byte-bits
← T bits → ← L bits →← B bits →

the specification of the direct-mapped cache memory configuration can be described as
shown in Table 1. It is assumed that each main memory address holds 1-byte data.

- 8 -

Item Value
Address range of main memory 0 to ___D___ - 1
Number of words in main memory 2T+L
Number of line locations in cache memory 2L
Cache memory size (for word data part) 2L+B bytes
Cache memory size (for tag-bits part) ___E___ bits

Table 1 Specification of direct-mapped cache memory configuration

Subquestion

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the above description.

Answer group for A

a) data transfer does not occur because the word that contains the target byte already
exists

b) the word 0A 00 1B 00 and tag-bits 000 are loaded into the line location 100
c) the word 0A 00 1B 00 and tag-bits 100 are loaded into the line location 000
d) the word 1B 00 41 10 and tag-bits 000 are loaded into the line location 100
e) the word 1B 00 41 10 and tag-bits 100 are loaded into the line location 000

Answer group for B

a) 52 to 55 (34 to 37) b) 60 to 63 (3C to 3F)
c) 164 to 167 (A4 to A7) d) 204 to 207 (CC to CF)

Answer group for C

a) cache hit → cache hit b) cache hit → cache miss
c) cache miss → cache hit d) cache miss → cache miss

Answer group for D and E

a) 2L-1 × T b) 2T-1 × L c) 2L × T d) 2T × L
e) 2T+L-1 f) 2T+L g) 2T+L+B-1 h) 2T+L+B

- 9 -

 Concerning questions Q2 through Q5, select two of the four questions.

Q3. Read the following description of a thesis management system in a university, and then

answer Subquestions 1 through 3.

University T has a variety of faculties. Each faculty has instructors and students.
University T holds a thesis defense meeting and graduation ceremony once a year. There is
a topic registration period when students register what they will do as their graduate thesis
before the thesis defense meeting is held. Students must contact an instructor in their faculty
who will instruct them in their theses. Each instructor can instruct at most 5 students. Each
student must be instructed by one instructor. After contacting instructors, students need to
consult their instructors to determine their thesis topics. Each student will choose one topic.
It is possible for them to either working on their thesis by themselves or in groups of
maximum 4 students. Once a student has selected a thesis topic, he/she has to register the
topic to the department of education before the registration deadline.

University T would like to build a thesis management system that enables students to register
their thesis topic online and checks their grade after defending their thesis. To build this
system, university T has created a simplified E-R diagram shown in Figure 1.

Figure 1 E-R diagram (simplified)

Topic
A

Registration

Student

Instructor

Faculty

Legend: zero or one only one

zero or many one or many

B

- 10 -

The table structures and examples of data storage are as follows:

Faculty Table

ID FacultyName
FIT Faculty of Information Technology
FEE Faculty of Electronical Engineering

Student Table

ID StudentName FacultyID Email DefenseTerm
S2101 Sarah FIT sarah@example.edu 2023
S2102 Karina FIT karina@example.edu 2023
S2103 Mike FIT mike@example.edu 2023
S2104 Selena FEE selena@example.edu 2023
S2105 Peter FEE peter@example.edu 2023
S2201 Roger FEE roger@example.edu 2024

Instructor Table

ID InstructorName Title FacultyID
I01 Christopher Professor FIT
I02 Lily Associate Professor FIT
I03 Marie Professor FEE
I04 Robert Lecturer FEE

Topic Table

ID TopicName
T01 Personal Area Networks using Zigbee Technology
T02 Rich Internet Application for Weekly College Timetable Generation
T03 General-purpose Online Ticket Reservation System
T04 Fiber Optic Communication

Registration Table

At the time of registration, the Grade field is set to null.
ID StudentID TopicID InstructorID Grade
R01 S2101 T02 I02
R02 S2102 T03 I01
R03 S2103 T03 I01
R04 S2105 T04 I03

- 11 -

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank
_______ in Figure 1.

Answer group for A and B

a) b) c)
d) e) f)

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the SQL statement SQL1.

The defense meeting in 2023 will be held in December. The topic registration period has
already started and the deadline for registration is getting close.
The department of education is planning to send a reminder email to the students.
The following SQL statement SQL1 outputs the students whose defense term is 2023 and
who have not registered thesis topics.

-- SQL1 --

SELECT s.ID, s.StudentName, s.Email

FROM Student s ___C___ Registration r
 ON s.ID = r.StudentID

WHERE s.DefenseTerm = 2023 AND ___D___

When SQL1 is executed using the sample data shown in the table definitions, SQL1 outputs
the following result:

ID StudentName Email
S2104 Selena selena@example.edu

Note:
INNER JOIN returns the values on the matched rows from the left and right tables.
LEFT OUTER JOIN returns the values on all rows from the left table and the matched rows

from the right table. Columns of unmatched rows are set to NULL.
RIGHT OUTER JOIN returns the values on all rows from the right table and the matched rows

from the left table. Columns of unmatched rows are set to NULL.

- 12 -

Answer group for C

a) INNER JOIN b) LEFT OUTER JOIN
c) RIGHT OUTER JOIN

Answer group for D

a) r.ID IS NOT NULL b) r.ID IS NULL
c) s.ID IS NOT NULL d) s.ID IS NULL

Subquestion 3

From the answer group below, select the correct answer to be inserted in the blank _______
in the following description.

At the thesis defense meeting, committees assess and mark students’ theses. After the
meeting, these grades are put into the Registration Table.
The following table shows the current content of the Registration table. It is assumed that
four tables other than the Registration Table remain unchanged.

Registration Table

ID StudentID TopicID InstructorID Grade
R01 S2101 T02 I02 85
R02 S2102 T03 I01 90
R03 S2103 T03 I01 90
R04 S2105 T04 I03 80
R05 S2104 T01 I04 85

University T gives excellent thesis awards to the students at the graduation ceremony. The
department of education determines the award receivers using the SQL statements SQL2
(not shown) and SQL3.
First, SQL2 (not shown) modifies the Registration Table by removing the ID, TopicID, and
InstructorID columns, adding the StudentName and FacultyID columns, and sorting rows by
StudentID. Then SQL2 outputs the result as the Result Table as follows:

Result Table

StudentID StudentName FacultyID Grade
S2101 Sarah FIT 85
S2102 Karina FIT 90
S2103 Mike FIT 90
S2104 Selena FEE 85
S2105 Peter FEE 80

- 13 -

Next, SQL3 determines the students who will receive the excellent thesis award from the
Result Table created by SQL2 and Faculty Table.

-- SQL3 --

SELECT f.FacultyName, st.StudentID, st.StudentName, st.Grade

FROM (SELECT r.FacultyID AS FacultyID,

 r.StudentID AS StudentID,

 r.StudentName AS StudentName,

 r.Grade AS Grade

 FROM Result r

 INNER JOIN (SELECT FacultyID, MAX(Grade) AS MaxGrade

 FROM Result

 GROUP BY Result.FacultyID

) AS mg ON r.FacultyID = mg.FacultyID

 AND r.Grade = mg.MaxGrade

) AS st

INNER JOIN Faculty f ON f.ID = st.FacultyID

When SQL3 is executed using the sample data shown above, SQL3 determines ___E___
as the excellent thesis award receiver.

Answer group for E

a) one student whose student ID is S2102
b) two students whose student ID’s are S2102 and S2103
c) two students whose student ID’s are S2102 and S2104
d) three students whose student ID’s are S2102, S2103, and S2104
e) three students whose student ID’s are S2102, S2104, and S2105
f) four students whose student ID’s are S2102, S2103, S2104, and S2105

- 14 -

R1

PC PC
Sales1 Sales2 Sales3 Sales4

PC PC

L2SW#1

PC PC
Support1 Support2 Support3

L2SW#2

PC

Sales LAN Support LAN

Port 1 2 3 4

192.168.10.1
G0 G1

Port 1 2 3

5 4

192.168.20.1

 Concerning questions Q2 through Q5, select two of the four questions.

Q4. Read the following description of an internal network of a company, and then answer

Subquestions 1 and 2.

Company U is a small-sized travel agent. It has two departments: Sales and Support.
Figure 1 shows the network topology of Company U’s internal network with two LANs.
Sales department has a Sales LAN with 4 PCs (Sales1, Sales2, Sales3, Sales4) which are
connected to the layer-2 switch L2SW#1. Support department has a Support LAN with 3
PCs (Support1, Support2, Support3) which are connected to the layer-2 switch L2SW#2.

Figure 1 Network topology of Company U’s internal network with two LANs

[MAC address table]
A network switch has several ports where PCs may be connected. Each device connected to
the switch identifies itself by the layer-2 address, which is the MAC address of the device.
Hence, each switch keeps track of the devices connected to it using a mapping table known
as the MAC address table. Table 1 shows a typical MAC address table of a switch.

Table 1 Typical MAC address table of a switch

Port MAC address
1 00:00:5E:00:53:A2
2 00:00:5E:00:53:3B

The MAC address table can be configured manually by the network administrator.
Alternatively, a switch can dynamically learn the MAC addresses of the devices connected
to its ports. In the case of dynamic learning, the MAC address table is empty at the beginning.
The switch does not have any idea which device is connected to which of its ports. Therefore,
if the switch receives any frame in port 1, the switch broadcasts / floods the frame to all other
ports (except port 1) since it does not have any knowledge regarding the port number of the
PC having the destination MAC address.

- 15 -

[Address learning by a switch]
When a frame is received by a switch, the source MAC address is used to populate the MAC
address table. For example, if Sales1 PC sends a frame to Sales4 PC, Sales1’s source MAC
address is mapped with port number 1 of L2SW#1. Thus, the switch’s MAC address table is
populated based on the source MAC address in a frame. When the destination MAC address
of a frame is already learned by the switch, such frame is directed forwarded through the
corresponding port number of the switch. Thus, frame forwarding is done based on the MAC
address table of the switch.

[ARP request / reply]
When a PC wants to send a frame to another PC in the same LAN, it must produce a layer-
2 frame. Figure 2 shows the format of a layer-2 frame.
The sender PC knows its own MAC address. However, the sender may not know the
destination MAC address, even though it knows the destination IP address. Therefore, the
sender has to resolve the MAC address of the destination PC based on the destination IP
address using the ARP protocol.

Destination MAC Address Source MAC address Payload

Figure 2 Layer-2 frame format

In the ARP protocol, the source device sends a broadcast message, known as an ARP request
message, to find out the MAC address of the destination device. All the devices other than
the destination machine ignore this ARP request since it is not intended for them. However,
the destination device replies to the source device with a unicast message known as an ARP
reply. Thus, the source device obtains the MAC address of the destination device.

If the destination device is in the same LAN, the source device resolves the MAC address of
the destination device and sends the frame directly. However, if the destination device is
located in another remote LAN, the source device first sends the frame to the default gateway
address (which is the interface IP address of the router). Once it is received by the gateway,
it then forwards the frame to the next link in a similar fashion.

Table 2 and Table 3 show the IP addresses and MAC addresses of the PCs in Sales-LAN and
Support LAN.
The default gateway address of the Sales LAN is 192.168.10.1, and the default gateway
address of the Support LAN is 192.168.20.1.

- 16 -

Table 2 IP addresses and MAC addresses of PCs in Sales LAN

PC name IP address MAC Address
Sales1 192.168.10.2/24 00:00:5E:00:53:11
Sales2 192.168.10.3/24 00:00:5E:00:53:22
Sales3 192.168.10.4/24 00:00:5E:00:53:33
Sales4 192.168.10.5/24 00:00:5E:00:53:44

Table 3 IP addresses and MAC addresses of PCs in Support LAN

PC name IP address MAC Address
Support1 192.168.20.2/24 00:00:5E:00:53:55
Support2 192.168.20.3/24 00:00:5E:00:53:66
Support3 192.168.20.4/24 00:00:5E:00:53:77

Table 4 shows the IP addresses and MAC addresses of the interfaces of the router R1.

Table 4 IP addresses and MAC addresses of router R1

Device Name Interface IP address MAC Address
R1 Gigabit 0 (G0) 192.168.10.1/24 00:00:5E:00:53:AA

Gigabit 1 (G1) 192.168.20.1/24 00:00:5E:00:53:BB

- 17 -

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the following description.

Assume that the MAC address table of L2SW#1 is empty. When Sales1 sends a packet to
Sales3, L2SW#1 forwards the ARP request to the port number(s) ___A___ .

When Sales1 wants to send a packet to Support2 for the first time, Sales1 first sends
___B___ to try to find out the ___C___ of the ___D___ because Sales1 and Support2
are not in the same network.

Answer group for A

a) 1, 2, 3, and 4 b) 1, 2, 3, 4, and 5 c) 2, 3, 4, and 5
d) 3 only e) 5 only

Answer group for B

a) Address learning b) ARP reply
c) ARP request d) MAC address table

Answer group for C and D

a) default gateway b) IP address c) L2SW#1
d) L2SW#2 e) MAC address f) Sales1
g) Support2

Subquestion 2
From the answer groups below, select the correct answer to be inserted in each blank
_______ in the following description. Here, the answers to be inserted in E1 and E2 should
be selected as the correct combination from the answer group for E. Also, the answers to be
inserted in F1 and F2 should be selected as the correct combination from the answer group
for F.

After ARP resolution as performed in Subquestion 1, if Sales1 wants to send a packet to
Support1, then the packet will be encapsulated at the data link layer of Sales1 as follows:

- 18 -

Frame Header IP Header

Source MAC Destination MAC Source IP Destination IP Data
00:00:5E:00:53:11 ___E1___ 192.168.10.2 ___E2___ Some data

When Support1 receives the packet sent from Sales1, the packet at Support1 will look like
as follows:

Frame Header IP Header
Source MAC Destination MAC Source IP Destination IP Data
 ___F1___ 00:00:5E:00:53:55 ___F2___ 192.168.20.2 Some data

Answer group for E

 E1 E2
a) 00:00:5E:00:53:55 192.168.10.1
b) 00:00:5E:00:53:55 192.168.20.1
c) 00:00:5E:00:53:55 192.168.20.2
d) 00:00:5E:00:53:AA 192.168.10.1
e) 00:00:5E:00:53:AA 192.168.20.1
f) 00:00:5E:00:53:AA 192.168.20.2
g) 00:00:5E:00:53:BB 192.168.10.1
h) 00:00:5E:00:53:BB 192.168.20.1
i) 00:00:5E:00:53:BB 192.168.20.2

Answer group for F

 F1 F2
a) 00:00:5E:00:53:11 192.168.10.1
b) 00:00:5E:00:53:11 192.168.10.2
c) 00:00:5E:00:53:11 192.168.20.1
d) 00:00:5E:00:53:AA 192.168.10.1
e) 00:00:5E:00:53:AA 192.168.10.2
f) 00:00:5E:00:53:AA 192.168.20.1
g) 00:00:5E:00:53:BB 192.168.10.1
h) 00:00:5E:00:53:BB 192.168.10.2
i) 00:00:5E:00:53:BB 192.168.20.1

- 19 -

 Concerning questions Q2 through Q5, select two of the four questions.

Q5. Read the following description of the test design for software, and then answer

Subquestions 1 through 3.

Company V, a software development company, is reviewing its testing method to reduce the
number of bugs left uncorrected in the programs developed by the company.

[Description of the testing method used in Company V]
Company V primarily tests the programs developed by the company using control flow
testing, which is a white box testing method.
Control flow testing focuses on the smallest units that form a program, such as commands,
paths, and decision conditions. Test cases and test data are prepared in accordance with the
coverage criteria defined during test planning, and then the behavior of the developed
programs is checked.
The coverage criteria include statement coverage, where all the statements are executed at
least once in the test, and decision condition coverage (hereinafter, branch coverage), where
all the paths after all the branches are executed at least once.
Company V uses branch coverage as its coverage criteria.

[Description of the short-cut evaluation]
A decision condition for a branch includes a single condition that evaluates only one
condition and a multiple condition that evaluates two or more single conditions combined
with “and” or “or”. The following example illustrates single conditions and a multiple
condition.

Example:

Usually, when a program is executed, short-cut evaluation is applied to a multiple condition.
In short-cut evaluation, single conditions that constitute a multiple condition are evaluated
in order of precedence. Once the result of the multiple condition is determined, the remaining
single conditions are not evaluated. For example, in the case of a multiple condition in which
two single conditions are combined with “and”, if the evaluation result of the first single
condition is false, then the evaluation result of the multiple condition is false, regardless of
the evaluation result of the second single condition. Therefore, in this case, it is not necessary
to evaluate the second single condition.

(a > b) and (b ≥ 0)

Single
condition

Multiple condition

Single
condition

- 20 -

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank
_______ in the following description.

Figure 1 shows a sample program to be tested, and Table 1 shows sample test cases for this
program. When the program is tested with the test cases according to the testing method used
in Company V, the test result reveals that ___A___ in test case 1 and ___B___ in test
case 2. Here, the short-cut evaluation is applied to multiple conditions.

FUNCTION func(INT: x, INT: a, INT: b, INT: c, INT: d) {

 IF (x > 10) {

 func1();

 IF ((a < 10) or (b < 20)) {

 func2();

 } ELSE {

 func3();

 }

 IF ((c > 10) and (d > 10)) {

 func4();

 } ELSE {

 func5();

 }

 }

}

Figure 1 Sample program to be tested

Table 1 Sample test cases

 Test data
Variable x a b c d

Test case 1 11 9 19 10 10
Test case 2 11 10 20 11 11

Answer group for A and B

a) b < 20 is not evaluated
b) b < 20 and c > 10 are not evaluated
c) b < 20 and d > 10 are not evaluated
d) c > 10 is not evaluated
e) c > 10 and d > 10 are not evaluated
f) d > 10 is not evaluated
g) all single conditions are evaluated

- 21 -

Subquestion 2

The control structure of a program can be described with a control flow graph. In a control
flow graph, processes are divided into serial instructions, iteration instructions, and branch
instructions, and each of them is placed in a process block (hereinafter, a node) that is
connected with a directed line segment (hereinafter, an edge) in the sequence of process
execution. Here, a multiple condition is divided into the respective single conditions, and
they are placed in the control flow graph.

Figure 2 is prepared by assigning node numbers 1 through 10 to the sample program in
Figure 1. Figure 3 shows the corresponding control flow graph. A circle indicates a node,
and an arrow indicates an edge. The node numbers in Figure 3 correspond to the node
numbers in Figure 2. Nodes S and E in Figure 3 are special nodes that indicate the entry and
exit of the program, respectively, and there are no corresponding processes in the sample
program.

From the answer group below, select the appropriate node number to be inserted in each
blank _______ in Figure 3.

FUNCTION func(INT: x, INT: a, INT: b,

 INT: c, INT: d) {

 IF 1 (x > 10) {
 2 func1();
 IF (3 (a < 10) or 4 (b < 20)) {
 5 func2();
 } ELSE {

 6 func3();
 }

 IF (7 (c > 10) and 8 (d > 10)) {
 9 func4();
 } ELSE {

 10func5();
 }

 }

}

 Figure 2 Sample program with node numbers

 Note: Shaded parts are not shown.
 Figure 3 Control flow graph

 1.

 2.

C

 7.

D

 9.

E

S

- 22 -

Answer group for C and D

a) 3 b) 4 c) 5.
d) 6 e) 8 f) 10

Subquestion 3

From the answer group below, select the correct answer to be inserted in each blank
_______ in the following description.

For the testing of the program shown in Figure 1, in the case of the branch coverage used by
Company V, the minimum number of test cases required is ___E___ .
Furthermore, there is a method for making test cases by extracting paths from a control flow
graph. The minimum number of paths (P) that cover all the edges and nodes of a control
flow graph is determined with the following expression:

P = Number of edges - Number of nodes + 2

By conducting a test for P test cases that correspond to the extracted paths, it is possible to
assure higher coverage than branch coverage.
With regard to the control flow graph in Figure 3, the value of P is ___F___ . To reduce
the number of bugs left uncorrected in its programs, Company V decides to test the programs
with test cases based on control flow graphs.

Answer group for E and F
a) 2 b) 3 c) 4
d) 5 e) 6 f) 7

- 23 -

 Question Q6 is compulsory.

Q6. Read the following description of programs that use the Bitap algorithm to search for a

string, and then answer Subquestions 1 through 3.

[Program Description]
The function BitapMatch is a program that uses the Bitap algorithm to search for a string.
The Bitap algorithm has the characteristic of using a bit sequence that is defined for each
individual character in the comparison between a string that is to be searched (hereinafter,
target string) and a search string.
In this question, 16-bit Binary type constants in binary are noted with the leading zeroes
omitted. For example, for the value 0000000000010101, the leading zeroes are omitted, and
the value is noted as "10101"B.

(1) The function BitapMatch uses two character arrays: Text[], which contains the target

string and Pat[], which contains the search string. Both array indexes start at 1.
The i-th character of Text[] is noted as Text[i] and the i-th character of Pat[] is
noted as Pat[i]. The target and search strings are composed of upper-case Roman
alphabets only, and both have a maximum length of 16 characters.
Figure 1 shows an example of storage when the target string Text[] is
“AACBBAACABABAB” and the search string Pat[] is “ACABAB”.

Element number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Text[] A A C B B A A C A B A B A B

Element number 1 2 3 4 5 6

Pat[] A C A B A B

Figure 1 Example of storage of the target string and the search string

(2) The function BitapMatch calls the function GenerateBitMask.

For each character from “A” through “Z ”, the function GenerateBitMask generates a
bit sequence (hereinafter, bit mask) according to the search string and stores it in the
16-bit Binary type array Mask[] with 26 elements.
In Mask[1] it stores the bit mask that corresponds to the character “A”, in Mask[2] it
stores the bit mask that corresponds to the character “B”, and so on. So, in Mask[1]
through Mask[26], it stores the bit masks that correspond to the characters “A” through
“Z ”.

- 24 -

The function GenerateBitMask first initializes each element of Mask[] to "0"B; then,
for each i that is equal to or greater than 1 and equal to or less than the number of
characters in Pat[], it sets 1 to the value of the i-th bit from the lowest position of the
value stored in Mask[Index(Pat[i])], which is the element of Mask[] that
corresponds to Pat[i].
The function Index returns the integer n (1 ≦ n ≦ 26) when it is called with the n-
th upper case letter in alphabetical order that has been specified in the argument.

(3) In the example where Pat[] is “ACABAB” as shown in Figure 1, Mask[] becomes as

shown in Figure 2 when the function GenerateBitMask is executed.

Mask[1] 0000000000010101 Bit mask that corresponds to “A”

Mask[2] ____A____ Bit mask that corresponds to “B”

Mask[3] 0000000000000010 Bit mask that corresponds to “C”

Mask[4] 0000000000000000 Bit mask that corresponds to “D”

⁝ ⁝

Mask[26] 0000000000000000 Bit mask that corresponds to “Z”

Figure 2 Value of Mask[] that corresponds to Pat[] shown in Figure 1

(4) The specifications of the arguments and the return value of the function

GenerateBitMask are shown in Table 1.

Table 1 Specifications of the arguments and return value of the function GenerateBitMask

Arguments /
return value

Data
type

Input /
Output Description

Pat[] CHAR Input One-dimensional array that stores the search string

Mask[] 16-bit

Binary
Output One-dimensional array that stores the bit masks

that correspond to the characters “A” through “Z”
Return value INT Output Number of characters in the search string

(5) In the programs, the following three operators “|”, “&”, and “<<” are used:

a | b obtains the 16-bit logical sum (OR) for each pair of bits in the corresponding bit
positions of two 16-bit binary data, a and b.

a & b obtains the 16-bit logical product (AND) for each pair of bits in the
corresponding bit positions of two 16-bit binary data, a and b.

a << b executes a logical left shift of the 16-bit binary data a by b bits.

- 25 -

[Program 1]

FUNCTION: GenerateBitMask(CHAR: Pat[], 16-bit Binary: Mask[]) {

 INT: i, PatLen

 PatLen ← number of characters in Pat[];
 FOR (i ← 1; i ≤ 26; i ← i + 1) {

 Mask[i] ← ___B___; /* Initialize */
 }

 FOR (i ← 1; i ≤ PatLen; i ← i + 1) {

 Mask[Index(Pat[i])] ← (___C___) | Mask[Index(Pat[i])];

 }

 return (PatLen);

}

Subquestion 1
From the answer groups below, select the correct answer to be inserted in each blank
_______ in the program description and Program 1.

Answer group for A

a) 0000000000000101 b) 0000000000101000
c) 0001010000000000 d) 1010000000000000

Answer group for B

a) "0"B b) "1"B
c) "1"B << (PatLen - 1) d) "1"B << PatLen
e) "1111111111111111"B

Answer group for C

a) "1"B b) "1"B << (PatLen - 1)
c) "1"B << (i - 1) d) "1"B << PatLen
e) "1"B << i

Subquestion 2
From the answer group below, select the correct answer to be inserted in each blank
_______ in the following description.

- 26 -

[Description of the Function BitapMatch]
(1) The function receives Text[] and Pat[], and from the smallest element number of

Text[], it searches for a string that matches Pat[]. If a match is found, it returns the
element number of the Text[] element corresponding to the first character in the
matching string. If no match is found, it returns -1.

(2) In the example shown in Figure 1, the string between Text[7] and Text[12] matches
Pat[], so it returns 7.

(3) Table 2 shows the specifications of the arguments and the return value of the function
BitapMatch.

Table 2 Specifications of the arguments and return value of the function BitapMatch

Arguments /
return value

Data
type

Input /
Output Description

Text[] CHAR Input One-dimensional array that stores the target string
Pat[] CHAR Input One-dimensional array that stores the search string

Return value INT Output

If the search string is found in the target string, return
the element number of the Text[] element that
corresponds to the first character in the matching
string. If the search string is not found, return -1.

[Program 2]

FUNCTION: BitapMatch(CHAR: Text[], CHAR: Pat[]) {

 16-bit Binary: Goal, Status, Mask[26]

 INT: i, TextLen, PatLen

 TextLen ← number of characters in Text[];
 PatLen ← GenerateBitMask(Pat[], Mask[]);

 Status ← "0"B;

 Goal ← "1"B << (PatLen - 1);

 FOR (i ← 1; i ≤ TextLen; i ← i + 1) {

 Status ← (Status << 1) | "1"B; /*** α ***/
 Status ← Status & Mask[Index(Text[i])]; /*** β ***/
 IF ((Status & Goal) ≠ "0"B) {

 return (i - PatLen + 1)

 }

 }

 return (-1)

}

- 27 -

The function BitapMatch is executed. The values shown in Figure 1 are stored in Text[]
and Pat[].
Table 3 shows the transition in the values of i, Mask[Index(Text[i])], and Status
immediately after the execution of the line commented /*** β ***/ (hereinafter, line β) in
Program 2.

For example, the value of Status immediately after the execution of line β when i is 1 is
"1"B, so the value of Status immediately after the execution of line α when i is 2 is "11"B,
which is a bitwise logical sum of "10"B (the value obtained by a logical left shift of "1"B by
1 bit) and "1"B. Next, given the fact that the value of Mask[Index(Text[2])] is "10101"B,
the value of Status immediately after the execution of line β when i is 2 is ___D___ .

In the same way, given the fact that the value of Status immediately after the execution of
line β when i is 8 is "10"B, the value of Mask[Index(Text[9])] immediately after the
execution of line α when i is 9 is ___E___ , so the value of Status immediately after the
execution of line β is ___F___ .

Table 3 Transition in the values of i, Mask[Index(Text[i])], and Status immediately

after the execution of line β in Program 2 for the example of storage in Figure 1

Answer group for D through F

a) "0"B b) "1"B c) "10"B d) "11"B
e) "100"B f) "101"B g) "10101"B

Subquestion 3
From the answer groups below, select the correct answer to be inserted in each blank
_______ in the following description concerning the extension of the function
GenerateBitMask. Here, assume that ___B___ in Program 3 contains the correct answer
for ___B___ in Subquestion 1.

i 1 2 … 8 9 …

Mask[Index(Text[i])] "10101"B "10101"B … "10"B ___E___ …

Status "1"B ___D___ … "10"B ___F___ …

- 28 -

In order to enable the specification of regular expression, such as the expression shown in
Table 4 in the search string, the function GenerateBitMask is extended to create the function
GenerateBitMaskRegex.

Table 4 Regular expression

[Program 3]

FUNCTION: GenerateBitMaskRegex(CHAR: Pat[], 16-bit Binary: Mask[]) {

 INT: i, OriginalPatLen, PatLen, Mode

 OriginalPatLen ← number of characters in Pat[];
 PatLen ← 0;

 Mode ← 0;

 FOR (i ← 1; i ≤ 26; i ← i + 1) {

 Mask[i] ← ___B___; /* Initialize */
 }

 FOR (i ← 1; i ≤ OriginalPatLen; i ← i + 1) {

 IF (Pat[i] = "[") {

 Mode ← 1;

 PatLen ← PatLen + 1;

 }

 ELSE {

 IF (Pat[i] = "]") {

 Mode ← 0;

 }

 ELSE {

 IF (Mode = 0) {

 PatLen ← PatLen + 1;

 }

 Mask[Index(Pat[i])] ← Mask[Index(Pat[i])] |

 ("1"B << (PatLen - 1));

 }

 }

 }

 return (PatLen);

}

Symbol Description

[]
Represents a character that matches one of the characters noted in the
[]. For example, “A[XYZ]B” represents “AXB”, “AYB”, and “AZB”.

- 29 -

Assume that “AC[BA]A[ABC]A” is stored in Pat[], and the function
GenerateBitMaskRegex is called. In this situation, the bit mask Mask[1] that corresponds
to “A” is "111101"B, and the return value of the function GenerateBitMaskRegex is
___G___ . Furthermore, nesting [] in the string that is stored in Pat[] is not possible, but
if “AC[B[AB]AC]A” is mistakenly stored in Pat[] and the function GenerateBitMaskRegex
is called, Mask[1] becomes ___H___ .

Answer group for G

a) 4 b) 6 c) 9 d) 13

Answer group for H

a) "1001101"B b) "1010100001"B
c) "1011001"B d) "101111"B
e) "110011"B f) "111101"B

- 30 -

 Concerning questions Q7 and Q8, select one of the two questions.
 Then, mark the in the selection area on the answer sheet, and answer the question.
 If two questions are selected, only the first question will be graded.

Q7. Read the following description of a C program, and then answer Subquestions 1 through

3.

Combat sports usually have classification to avoid mismatches and for obvious safety
reasons. For example, one of the men freestyle wrestling rules has six weight classes: 57, 65,
74, 86, 97, and 125 kg. A wrestler can participate in a weight class greater than or equal to
his weight according to the rule. In this question, it is assumed that a wrestler participates in
the lightest class of all the possible classes. For example, a wrestler weighing 58 kg is
allowed to participate in all classes except for the 57 kg class, but he shall participate in the
65 kg class.

[Program Description]
This is a program that accepts the request from wrestlers for participating in a wrestling
game, classifies the wrestlers according to their weight, and displays all the requests accepted.

(1) The program receives the number of wrestlers and then the name and weight of the

wrestlers from stdin. The number of wrestlers and the weight consist of decimal
numbers of up to 3 digits, and the name consists of alphabets of up to 50 characters. It
is assumed that all input data satisfy these specifications. Table 1 shows an example of
information about four wrestlers.

Table 1 An example of information about four wrestlers

Name Weight (kg)
Anthony 85
Bob 68
Charles 77
Daniel 103

(2) The data structure for storing information about wrestlers is the array of linked lists

named Entries. Here, Entries[0], Entries[1], …, Entries[5] correspond to the
weight classes of 57, 65, …, 125 kg, respectively. Each element of Entries points to a
linked list that holds information about all wrestlers participating in the corresponding
weight class, or NULL if no wrestlers are in the class.
Figure 1 illustrates the data structures for storing information about wrestlers.

- 31 -

Figure 1 The data structures for storing information about wrestlers

(3) A node of the linked list represents a wrestler’s information, which is a struct named

Wrestler consisting of three fields: name, weight, and next.

struct Wrestler {

 char name[51];

 int weight;

 struct Wrestler *next;

};

typedef struct Wrestler Wrestler_t;

The first two fields hold a wrestler’s name and his weight. The field next is the pointer
to a node holding the next wrestler’s information, or NULL if no more wrestler is present
in the class.

(4) The program proceeds as follows:

Step 1 Initialize Entries and take the number of wrestlers from stdin.
Step 2 Repeat (i) through (iii) for each wrestler.

(i) Take the wrestler’s name and weight from stdin.
(ii) Create a node holding the wrestler’s information.
(iii) Find the appropriate linked list for the node created in (ii) from Entries and insert

the node at the end of the list. If no weight class is found, take another weight for
the node and find the appropriate linked list again.

Step 3 Output information in the linked list. If a weight class does not contain any nodes,
output “<empty>” instead of wrestler’s information.

node1

Entries

indicates NULL pointer.

node4

node2 node3

- 32 -

(5) When the program is executed using the sample data in Table 1, the output is as follows:

How many wrestlers want to participate: 4

Enter the name of the wrestler: Anthony

Enter the weight for Anthony: 85

Enter the name of the wrestler: Bob

Enter the weight for Bob: 68

Enter the name of the wrestler: Charles

Enter the weight for Charles: 77

Enter the name of the wrestler: Daniel

Enter the weight for Daniel: 103

Result:

 57 kg class: <empty>

 65 kg class: <empty>

 74 kg class: [Bob 68]

 86 kg class: [Anthony 85] [Charles 77]

 97 kg class: <empty>

125 kg class: [Daniel 103]

(6) Table 2 shows the functions used in the program.

Table 2 Functions used in the program

Function Name Description
void Initialize(void) Initializes Entries.
Wrestler_t

 *AcceptEntry(void)

Accepts a participation entry from a wrestler.

int FindWeightClass(int) Finds appropriate weight class for a wrestler of
a given weight. Returns -1 if not found.

void Insert(Wrestler_t *,

 int)

Inserts given node in the linked list specified by
the given index.

void Display(void) Displays all information of wrestlers registered
in the linked list.

void Deallocate(void) Cleans up dynamically allocated memories.
void *malloc(size_t) (Standard library function) Dynamically

allocates a given size of memory and returns a
pointer that points to that memory.

Void free(void *) (Standard library function) Deallocates memory
allocated by malloc.

(7) Table 3 shows the variables used in the program.

- 33 -

Table 3 Variables used in the program

Variable Name Description
Wrestler_t

 *Entries[NUM_CLASSES]

An array of linked lists where each element
represents weight classes of 57, 65, 74, 86, 97,
and 125 kg respectively.

const int

 UpperLimits[NUM_CLASSES]

An array that stores the upper limit for each
weight class.

[Program]

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define NUM_CLASSES 6

struct Wrestler {

 char name[51];

 int weight;

 struct Wrestler *next;

};

typedef struct Wrestler Wrestler_t;

Wrestler_t *Entries[NUM_CLASSES];

const int UpperLimits[NUM_CLASSES] = {57, 65, 74, 86, 97, 125};

void Initialize(void);

Wrestler_t *AcceptEntry(void);

int FindWeightClass(int);

void Insert(Wrestler_t *, int);

void Display(void);

void Deallocate(void);

int main() {

 Wrestler_t *wrestler;

 int n, i, index;

 Initialize();

 printf("How many wrestlers want to participate: ");

 scanf("%3d", &n);

- 34 -

 for (i = 0; i < n; i++) {

 wrestler = AcceptEntry();

 index = FindWeightClass(wrestler->weight);

 while (___A___) {
 printf("%s's weight exceeds %d kg. Re-enter the weight: ",

 wrestler->name, UpperLimits[NUM_CLASSES - 1]);

 scanf("%3d", &wrestler->weight);

 index = FindWeightClass(wrestler->weight);

 }

 Insert(wrestler, index);

 }

 Display();

 Deallocate();

 return 0;

}

void Initialize(void) {

 int i;

 for (i = 0; i < NUM_CLASSES; i++) {

 Entries[i] = NULL;

 }

}

Wrestler_t *AcceptEntry(void) {

 Wrestler_t *wrestler = (Wrestler_t *)malloc(___B___);
 printf("Enter the name of the wrestler: ");

 scanf("%50s", wrestler->name);

 printf("Enter the weight for %s: ", wrestler->name);

 scanf("%3d", &wrestler->weight);

 wrestler->next = NULL;

 return wrestler;

}

int FindWeightClass(int weight) {

 int i;

 for (i = 0; i < NUM_CLASSES; i++) {

 if (___C___) {
 return i;

 }

 }

 return -1;

}

- 35 -

void Insert(Wrestler_t *wrestler, int i) {

 Wrestler_t *curr = Entries[i];

 if (curr == NULL) { /*** α ***/
 ___D___ = wrestler;
 } else {

 while (curr->next != NULL) { /*** β ***/
 curr = curr->next;

 }

 ___E___ = wrestler; /*** γ ***/
 }

}

void Display(void) {

 Wrestler_t *curr;

 int i;

 printf("Result:\n");

 for (i = 0; i < NUM_CLASSES; i++) {

 curr = Entries[i];

 printf("%3d kg class:", UpperLimits[i]);

 if (curr == NULL) {

 printf("<empty>\n");

 continue;

 }

 while (curr != NULL) {

 printf("[%s %d] ", curr->name, curr->weight);

 curr = curr->next;

 }

 printf("\n");

 }

}

void Deallocate(void) {

 int i;

 Wrestler_t ___F___;
 for (i = 0; i < NUM_CLASSES; i++) {

 curr = Entries[i];

 while (curr != NULL) {

 next = curr->next;

 free(curr);

 curr = next;

 }

 }

}

- 36 -

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the above program.

Answer group for A

a) index != -1 b) index != 0
c) index == -1 d) index == 0

Answer group for B

a) sizeof(Wrestler_t *) b) sizeof(Wrestler_t)
c) Wrestler_t * d) Wrestler_t

Answer group for C

a) UpperLimits[i] < weight b) UpperLimits[i] <= weight
c) UpperLimits[i] > weight d) UpperLimits[i] >= weight

Answer group for D and E

a) Entries[i + 1] b) Entries[i - 1]
c) Entries[i] d) curr
e) curr->next f) curr->next->next

Answer group for F

a) &curr, &next b) &curr, next
c) *curr, *next d) *curr, next
e) curr, next

Subquestion 2
From the answer group below, select the correct answer to be inserted in the blank
___G___ in the following description.

The program is modified as follows to order the nodes in each linked list in ascending order
of weight instead of the order of registration.

(1) Replace the line designated by /*** α ***/ with the following two lines.

 if (curr == NULL || curr->weight >= wrestler->weight) {

 wrestler->next = curr; /*** δ ***/

- 37 -

(2) Replace the line designated by /*** β ***/ with the following two lines.

 while ((curr->next != NULL) &&

 (___G___)) {

(3) Insert the following line immediately before the line designated by /*** γ ***/.

 wrestler->next = curr->next;

Answer group for G

a) curr->next->weight < wrestler->weight

b) curr->next->weight >= wrestler->weight

c) curr->weight < wrestler->weight

d) curr->weight >= wrestler->weight

Subquestion 3

From the answer group below, select the correct answer to be inserted in the blank
___H___ in the following description.

It is assumed that the program after modification in Subquestion 2 is executed, and it
receives information about five wrestlers shown in Table 4. The line designated by /*** δ
***/ will be executed ___H___ times.

Table 4 Information about five wrestlers

Name Weight (kg)
Eric 88
Faraday 72
Gregory 91
Harold 97
Issacs 68

Answer group for H

a) 2 b) 3 c) 4 d) 5

- 38 -

 Concerning questions Q7 and Q8, select one of the two questions.

Q8. Read the following description of Java programs, and then answer Subquestions 1 and 2.

See the end of this booklet for the explanation of the APIs used in the Java programs.

[Program Description]
The purpose of this program is to manage “what you need to do” (hereinafter, a ToDo).
(1) The class ToDo represents a ToDo. The subject, the deadline, and the priority are

specified by the constructor. The deadline is a character string that consists of either 8
numeric characters that represent year, month, and date, or 12 numeric characters that
represent year, month, date, hours, and minutes (hereinafter, date and time). For
example, October 22, 2023 is represented by the string “20231022”, and October 22,
2023, 1:00 p.m. is represented by the string “202310221300”. Here, it is assumed that
there is no error in date and time.
This class has methods to get the subject, the deadline, and the priority, methods to set
and get the state, and the field id that identifies the ToDo.
The enumeration Priority represents the priority of the ToDo. The values are LOW,
MIDDLE, and HIGH in ascending order of priority.
The enumeration State represents the state of the ToDo. The values are
NOT_YET_STARTED, STARTED, and DONE.

(2) The class ToDoList holds a list of ToDos.
This class guarantees that the list does not contain ToDo’s whose field id values are the
same.
This class has the method add to add a ToDo, the method update to update a ToDo,
and the method select to return a list of ToDo’s that matches conditions.
When a ToDo that has been held in the list is specified as the argument of the method
add, and when a ToDo that is not held in the list is specified as the argument of the
method update, these methods do nothing.
Zero or more conditions can be specified as the argument of the method select. When
one or more conditions are specified, the method returns the list of ToDo’s that satisfy
all the conditions. When no condition is specified, the method returns the list of all
ToDo’s that has been held.

(3) The interface Condition is a functional interface that represents the conditions to select
ToDo’s. The method test returns true when the condition is satisfied.

(4) The class ToDoListTester is a class that is used for testing.

- 39 -

[Program 1]

import java.util.UUID;

public class ToDo {

 public enum Priority { LOW, MIDDLE, HIGH }

 public enum State { NOT_YET_STARTED, STARTED, DONE }

 // Regular expression that matches a string of 8 or 12 numeric characters
 private static final String DEADLINE_PATTERN = "\\d{8}|\\d{12}";

 private final String id;

 private String subject;

 private String deadline;

 private Priority priority;

 private State state;

 private ToDo(String subject, String deadline, Priority priority,

 String id, State state) {

 if (!deadline.matches(DEADLINE_PATTERN)) {

 throw new IllegalArgumentException();

 }

 this.subject = subject;

 this.deadline = deadline;

 this.priority = priority;

 this.id = id;

 this.state = state;

 }

 public ToDo(String subject, String deadline, Priority priority) {

 this(subject, deadline, priority,

 UUID.randomUUID().toString(), State.NOT_YET_STARTED);

 }

 public ToDo(ToDo todo) {

 this(todo.subject, todo.deadline,

 todo.priority, todo.id, todo.state);

 }

 public String getSubject() { return subject; }

 public String getDeadline() { return deadline; }

 public Priority getPriority() { return priority; }

 public State getState() { return state; }

 public void setState(State state) { this.state = state; }

 public int hashCode() { return id.hashCode(); }

- 40 -

 public boolean equals(Object o) {

 return o instanceof ToDo && ___A___;
 }

 public String toString() {

 return String.format(

 "Subject: %s, Deadline: %s, Priority: %s, State: %s",

 subject, deadline, priority, state);

 }

}

[Program 2]

import java.util.ArrayList;

import java.util.List;

import java.util.stream.Collectors;

import java.util.stream.Stream;

public class ToDoList {

 private List<ToDo> todoList = new ArrayList<>();

 public void add(ToDo todo) {

 if (___B___) {
 todoList.add(new ToDo(todo));

 }

 }

 public void update(ToDo todo) {

 int index = todoList.indexOf(todo);

 if (index ___C___) {
 todoList.set(index, todo);

 }

 }

 public List<ToDo> select(Condition... conditions) {

 return todoList.stream().

 filter(t -> Stream.of(conditions).___D___).
 // Generate a list from the stream

 collect(Collectors.toList());

 }

}

- 41 -

[Program 3]

import java.util.function.Predicate;

public interface Condition ___E___ Predicate<ToDo> {}

[Program 4]

public class ToDoListTester {

 public static void main(String[] args) {

 ToDoList list = new ToDoList();

 list.add(new ToDo("Send the e-mail",

 "202310231500", ToDo.Priority.HIGH));

 list.add(new ToDo("Reserve a hotel room",

 "20231025", ToDo.Priority.LOW));

 list.add(new ToDo("Purchase tickets",

 "20231030", ToDo.Priority.MIDDLE));

 list.add(new ToDo("Create the report",

 "20231028", ToDo.Priority.HIGH));

 list.add(new ToDo("Set up the meeting",

 "202311201400", ToDo.Priority.HIGH));

 list.update(new ToDo("Purchase a PC",

 "20231121", ToDo.Priority.HIGH));

 list.select().forEach(todo -> {

 todo.setState(ToDo.State.STARTED);

 list.update(todo);

 });

 Condition condition1 =

 todo -> todo.getDeadline().compareTo("20231101") < 0;

 Condition condition2 =

 todo -> todo.getPriority().equals(ToDo.Priority.HIGH);

 list.select(condition1, condition2).

 forEach(System.out::println);

 }

}

Subquestion 1
From the answer groups below, select the correct answer to be inserted in each blank
_______ in the above programs.

Answer group for A

a) ((ToDo) o).id.equals(id) b) (ToDo) o.id.equals(id)
c) id.equals(id) d) o.id.equals(id)

- 42 -

Answer group for B

a) !todoList.contains(todo) b) !todoList.isEmpty()
c) todoList.contains(todo) d) todoList.isEmpty()

Answer group for C

a) != -1 b) < todoList.size()
c) == -1 d) >= todoList.size()

Answer group for D

a) allMatch(c -> c.test(t)) b) allMatch(c -> t.test(c))
c) anyMatch(c -> c.test(t)) d) anyMatch(c -> t.test(c))

Answer group for E

a) extends b) implements
c) super d) throws

Subquestion 2

Figure 1 shows the execution result of Program 4. From the answer group below, select the
correct answer to be inserted in each blank _______ in Figure 1.

 ___GF____, State: STARTED
 ___FG____, State: STARTED

Figure 1 Execution result of Program 4

Answer group for F and G

a) Subject: Create the report, Deadline: 20231028, Priority: HIGH
b) Subject: Purchase a PC, Deadline: 20231121, Priority: HIGH
c) Subject: Purchase tickets, Deadline: 20231030, Priority: MIDDLE
d) Subject: Reserve a hotel room, Deadline: 20231025, Priority: LOW
e) Subject: Send the e-mail, Deadline: 202310231500, Priority: HIGH
f) Subject: Set up the meeting, Deadline: 202311201400, Priority: HIGH

- 43 -

■ Explanation of APIs used in the Java programs

java.lang

 public final class String
The String class represents character strings.

Methods
 public boolean matches(String regex)

Determines whether or not this string matches the specified regular expression.
For example, the regular expression "\\d{8}|\\d{12}" matches a string of 8 or
12 numeric characters.
Parameter: regex - The regular expression
Return value: true if this string matches the specified regular expression
 Otherwise, false

 public int compareTo(String str)

Compares this string and the specified string lexicographically.
Parameter: str - The string
Return value: 0 if this string is equal to the specified string
 A value less than 0 if this string is lexicographically less than the

specified string
 A value greater than 0 if this string is lexicographically greater than

the specified string

java.util

 public final class UUID
The UUID class represents a universally unique identifier (UUID), which is a 128-
bit value.

Method
 public static UUID randomUUID()

Randomly generates a universally unique identifier.
Return value: A randomly generated unique identifier

- 44 -

java.util.function

 public interface Predicate<T>
A functional interface that represents a predicate (Boolean-valued function) of one
argument.

Method
 public boolean test(T t)

Evaluates this predicate on the given argument.
Parameter: t - The input argument
Return value: true if the input argument matches the predicate
 Otherwise, false

java.util.stream

 public interface Stream<T>

An interface that supports functional-style operations on streams of elements.
Methods
 public boolean allMatch(Predicate<? super T> predicate)

Returns whether all elements of this stream match the provided predicate.
Parameter: predicate - The function
Return value: true if all elements of the stream match the provided predicate
 Otherwise, false

 public boolean anyMatch(Predicate<? super T> predicate)

Returns whether any elements of this stream match the provided predicate.
Parameter: predicate - The function
Return value: true if any elements of the stream match the provided predicate
 Otherwise, false

 public Stream filter(Predicate<? super T> predicate)

Returns a stream consisting of the elements of this stream that match the given
predicate.
Parameter: predicate - The function
Return value: A stream consisting of the elements that match the given predicate.

_ _
Company names and product names appearing in the test questions are trademarks or registered
trademarks of their respective companies. Note that the ® and ™ symbols are not used within the text.

